Theoretical analysis of the magnetocardiographic pattern for reentry wave propagation in a three-dimensional human heart model

We present a computational study of reentry wave propagation using electrophysiological models of human cardiac cells and the associated magnetic field map of a human heart. We examined the details of magnetic field variation and related physiological parameters for reentry waves in two-dimensional...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Progress in biophysics and molecular biology 2008, Vol.96 (1), p.339-356
Hauptverfasser: Bin Im, Uk, Sung Kwon, Soon, Kim, Kiwoong, Ho Lee, Yong, Ki Park, Yong, Hyun Youn, Chan, Bo Shim, Eun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 356
container_issue 1
container_start_page 339
container_title Progress in biophysics and molecular biology
container_volume 96
creator Bin Im, Uk
Sung Kwon, Soon
Kim, Kiwoong
Ho Lee, Yong
Ki Park, Yong
Hyun Youn, Chan
Bo Shim, Eun
description We present a computational study of reentry wave propagation using electrophysiological models of human cardiac cells and the associated magnetic field map of a human heart. We examined the details of magnetic field variation and related physiological parameters for reentry waves in two-dimensional (2-D) human atrial tissue and a three-dimensional (3-D) human ventricle model. A 3-D mesh system representing the human ventricle was reconstructed from the surface geometry of a human heart. We used existing human cardiac cell models to simulate action potential (AP) propagation in atrial tissue and 3-D ventricular geometry, and a finite element method and the Galerkin approximation to discretize the 3-D domain spatially. The reentry wave was generated using an S1-S2 protocol. The calculations of the magnetic field pattern assumed a horizontally layered conductor for reentry wave propagation in the 3-D ventricle. We also compared the AP and magnetocardiograph (MCG) magnitudes during reentry wave propagation to those during normal wave propagation. The temporal changes in the reentry wave motion and magnetic field map patterns were also analyzed using two well-known MCG parameters: the current dipole direction and strength. The current vector in a reentry wave forms a rotating spiral. We delineated the magnetic field using the changes in the vector angle during a reentry wave, demonstrating that the MCG pattern can be helpful for theoretical analysis of reentry waves.
doi_str_mv 10.1016/j.pbiomolbio.2007.07.024
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70333248</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0079610707000582</els_id><sourcerecordid>70333248</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-6013db04b30813f498b0ce28627af8652377bff2a026fa4751f2e6f09ee122ba3</originalsourceid><addsrcrecordid>eNqFUE1r3DAQFaWl2Sb9C0Wn3rzVhyPZxza0TSDQS3oWY3m01mJLrqRN2Ut_e7TsQo6FYQZm3rw38wihnG054-rLfrsOPi5xrnkrGNPbU4j2DdnwTsuGaynekk0d9I3iTF-RDznvGWOCa_WeXHHd8151_Yb8e5owJizewkwhwHzMPtPoaJmQLrALWKKFNPq4S7BO3tIVSsEUqIuJJsRQ0pH-hWeka4or7KD4GKgPFCpFnTejXzDk2qwC02GBQCeEVOgSR5xvyDsHc8aPl3pNfv_4_nR33zz--vlw9_WxsVKL0ijG5TiwdpCs49K1fTcwi6JTQoPr1K2QWg_OCWBCOWj1LXcClWM9IhdiAHlNPp9565F_DpiLWXy2OM8QMB6y0UxKKdquArsz0KaYc0Jn1uQXSEfDmTl5b_bm1Xtz8t6cQrR19dNF4zAsOL4uXsyugG9nANZPnz0mk63HYHH0CW0xY_T_V3kBrWGduw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70333248</pqid></control><display><type>article</type><title>Theoretical analysis of the magnetocardiographic pattern for reentry wave propagation in a three-dimensional human heart model</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Bin Im, Uk ; Sung Kwon, Soon ; Kim, Kiwoong ; Ho Lee, Yong ; Ki Park, Yong ; Hyun Youn, Chan ; Bo Shim, Eun</creator><creatorcontrib>Bin Im, Uk ; Sung Kwon, Soon ; Kim, Kiwoong ; Ho Lee, Yong ; Ki Park, Yong ; Hyun Youn, Chan ; Bo Shim, Eun</creatorcontrib><description>We present a computational study of reentry wave propagation using electrophysiological models of human cardiac cells and the associated magnetic field map of a human heart. We examined the details of magnetic field variation and related physiological parameters for reentry waves in two-dimensional (2-D) human atrial tissue and a three-dimensional (3-D) human ventricle model. A 3-D mesh system representing the human ventricle was reconstructed from the surface geometry of a human heart. We used existing human cardiac cell models to simulate action potential (AP) propagation in atrial tissue and 3-D ventricular geometry, and a finite element method and the Galerkin approximation to discretize the 3-D domain spatially. The reentry wave was generated using an S1-S2 protocol. The calculations of the magnetic field pattern assumed a horizontally layered conductor for reentry wave propagation in the 3-D ventricle. We also compared the AP and magnetocardiograph (MCG) magnitudes during reentry wave propagation to those during normal wave propagation. The temporal changes in the reentry wave motion and magnetic field map patterns were also analyzed using two well-known MCG parameters: the current dipole direction and strength. The current vector in a reentry wave forms a rotating spiral. We delineated the magnetic field using the changes in the vector angle during a reentry wave, demonstrating that the MCG pattern can be helpful for theoretical analysis of reentry waves.</description><identifier>ISSN: 0079-6107</identifier><identifier>EISSN: 1873-1732</identifier><identifier>DOI: 10.1016/j.pbiomolbio.2007.07.024</identifier><identifier>PMID: 17919689</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Heart - physiology ; Heart Conduction System - physiology ; Humans ; Magnetic field variation ; Magnetocardiography ; MCG ; Models, Cardiovascular ; Monodomain method ; Reentry wave dynamics</subject><ispartof>Progress in biophysics and molecular biology, 2008, Vol.96 (1), p.339-356</ispartof><rights>2007 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-6013db04b30813f498b0ce28627af8652377bff2a026fa4751f2e6f09ee122ba3</citedby><cites>FETCH-LOGICAL-c372t-6013db04b30813f498b0ce28627af8652377bff2a026fa4751f2e6f09ee122ba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.pbiomolbio.2007.07.024$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,4025,27927,27928,27929,45999</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17919689$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bin Im, Uk</creatorcontrib><creatorcontrib>Sung Kwon, Soon</creatorcontrib><creatorcontrib>Kim, Kiwoong</creatorcontrib><creatorcontrib>Ho Lee, Yong</creatorcontrib><creatorcontrib>Ki Park, Yong</creatorcontrib><creatorcontrib>Hyun Youn, Chan</creatorcontrib><creatorcontrib>Bo Shim, Eun</creatorcontrib><title>Theoretical analysis of the magnetocardiographic pattern for reentry wave propagation in a three-dimensional human heart model</title><title>Progress in biophysics and molecular biology</title><addtitle>Prog Biophys Mol Biol</addtitle><description>We present a computational study of reentry wave propagation using electrophysiological models of human cardiac cells and the associated magnetic field map of a human heart. We examined the details of magnetic field variation and related physiological parameters for reentry waves in two-dimensional (2-D) human atrial tissue and a three-dimensional (3-D) human ventricle model. A 3-D mesh system representing the human ventricle was reconstructed from the surface geometry of a human heart. We used existing human cardiac cell models to simulate action potential (AP) propagation in atrial tissue and 3-D ventricular geometry, and a finite element method and the Galerkin approximation to discretize the 3-D domain spatially. The reentry wave was generated using an S1-S2 protocol. The calculations of the magnetic field pattern assumed a horizontally layered conductor for reentry wave propagation in the 3-D ventricle. We also compared the AP and magnetocardiograph (MCG) magnitudes during reentry wave propagation to those during normal wave propagation. The temporal changes in the reentry wave motion and magnetic field map patterns were also analyzed using two well-known MCG parameters: the current dipole direction and strength. The current vector in a reentry wave forms a rotating spiral. We delineated the magnetic field using the changes in the vector angle during a reentry wave, demonstrating that the MCG pattern can be helpful for theoretical analysis of reentry waves.</description><subject>Animals</subject><subject>Heart - physiology</subject><subject>Heart Conduction System - physiology</subject><subject>Humans</subject><subject>Magnetic field variation</subject><subject>Magnetocardiography</subject><subject>MCG</subject><subject>Models, Cardiovascular</subject><subject>Monodomain method</subject><subject>Reentry wave dynamics</subject><issn>0079-6107</issn><issn>1873-1732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUE1r3DAQFaWl2Sb9C0Wn3rzVhyPZxza0TSDQS3oWY3m01mJLrqRN2Ut_e7TsQo6FYQZm3rw38wihnG054-rLfrsOPi5xrnkrGNPbU4j2DdnwTsuGaynekk0d9I3iTF-RDznvGWOCa_WeXHHd8151_Yb8e5owJizewkwhwHzMPtPoaJmQLrALWKKFNPq4S7BO3tIVSsEUqIuJJsRQ0pH-hWeka4or7KD4GKgPFCpFnTejXzDk2qwC02GBQCeEVOgSR5xvyDsHc8aPl3pNfv_4_nR33zz--vlw9_WxsVKL0ijG5TiwdpCs49K1fTcwi6JTQoPr1K2QWg_OCWBCOWj1LXcClWM9IhdiAHlNPp9565F_DpiLWXy2OM8QMB6y0UxKKdquArsz0KaYc0Jn1uQXSEfDmTl5b_bm1Xtz8t6cQrR19dNF4zAsOL4uXsyugG9nANZPnz0mk63HYHH0CW0xY_T_V3kBrWGduw</recordid><startdate>2008</startdate><enddate>2008</enddate><creator>Bin Im, Uk</creator><creator>Sung Kwon, Soon</creator><creator>Kim, Kiwoong</creator><creator>Ho Lee, Yong</creator><creator>Ki Park, Yong</creator><creator>Hyun Youn, Chan</creator><creator>Bo Shim, Eun</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>2008</creationdate><title>Theoretical analysis of the magnetocardiographic pattern for reentry wave propagation in a three-dimensional human heart model</title><author>Bin Im, Uk ; Sung Kwon, Soon ; Kim, Kiwoong ; Ho Lee, Yong ; Ki Park, Yong ; Hyun Youn, Chan ; Bo Shim, Eun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-6013db04b30813f498b0ce28627af8652377bff2a026fa4751f2e6f09ee122ba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animals</topic><topic>Heart - physiology</topic><topic>Heart Conduction System - physiology</topic><topic>Humans</topic><topic>Magnetic field variation</topic><topic>Magnetocardiography</topic><topic>MCG</topic><topic>Models, Cardiovascular</topic><topic>Monodomain method</topic><topic>Reentry wave dynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bin Im, Uk</creatorcontrib><creatorcontrib>Sung Kwon, Soon</creatorcontrib><creatorcontrib>Kim, Kiwoong</creatorcontrib><creatorcontrib>Ho Lee, Yong</creatorcontrib><creatorcontrib>Ki Park, Yong</creatorcontrib><creatorcontrib>Hyun Youn, Chan</creatorcontrib><creatorcontrib>Bo Shim, Eun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Progress in biophysics and molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bin Im, Uk</au><au>Sung Kwon, Soon</au><au>Kim, Kiwoong</au><au>Ho Lee, Yong</au><au>Ki Park, Yong</au><au>Hyun Youn, Chan</au><au>Bo Shim, Eun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical analysis of the magnetocardiographic pattern for reentry wave propagation in a three-dimensional human heart model</atitle><jtitle>Progress in biophysics and molecular biology</jtitle><addtitle>Prog Biophys Mol Biol</addtitle><date>2008</date><risdate>2008</risdate><volume>96</volume><issue>1</issue><spage>339</spage><epage>356</epage><pages>339-356</pages><issn>0079-6107</issn><eissn>1873-1732</eissn><abstract>We present a computational study of reentry wave propagation using electrophysiological models of human cardiac cells and the associated magnetic field map of a human heart. We examined the details of magnetic field variation and related physiological parameters for reentry waves in two-dimensional (2-D) human atrial tissue and a three-dimensional (3-D) human ventricle model. A 3-D mesh system representing the human ventricle was reconstructed from the surface geometry of a human heart. We used existing human cardiac cell models to simulate action potential (AP) propagation in atrial tissue and 3-D ventricular geometry, and a finite element method and the Galerkin approximation to discretize the 3-D domain spatially. The reentry wave was generated using an S1-S2 protocol. The calculations of the magnetic field pattern assumed a horizontally layered conductor for reentry wave propagation in the 3-D ventricle. We also compared the AP and magnetocardiograph (MCG) magnitudes during reentry wave propagation to those during normal wave propagation. The temporal changes in the reentry wave motion and magnetic field map patterns were also analyzed using two well-known MCG parameters: the current dipole direction and strength. The current vector in a reentry wave forms a rotating spiral. We delineated the magnetic field using the changes in the vector angle during a reentry wave, demonstrating that the MCG pattern can be helpful for theoretical analysis of reentry waves.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>17919689</pmid><doi>10.1016/j.pbiomolbio.2007.07.024</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0079-6107
ispartof Progress in biophysics and molecular biology, 2008, Vol.96 (1), p.339-356
issn 0079-6107
1873-1732
language eng
recordid cdi_proquest_miscellaneous_70333248
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Animals
Heart - physiology
Heart Conduction System - physiology
Humans
Magnetic field variation
Magnetocardiography
MCG
Models, Cardiovascular
Monodomain method
Reentry wave dynamics
title Theoretical analysis of the magnetocardiographic pattern for reentry wave propagation in a three-dimensional human heart model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T19%3A07%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20analysis%20of%20the%20magnetocardiographic%20pattern%20for%20reentry%20wave%20propagation%20in%20a%20three-dimensional%20human%20heart%20model&rft.jtitle=Progress%20in%20biophysics%20and%20molecular%20biology&rft.au=Bin%20Im,%20Uk&rft.date=2008&rft.volume=96&rft.issue=1&rft.spage=339&rft.epage=356&rft.pages=339-356&rft.issn=0079-6107&rft.eissn=1873-1732&rft_id=info:doi/10.1016/j.pbiomolbio.2007.07.024&rft_dat=%3Cproquest_cross%3E70333248%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70333248&rft_id=info:pmid/17919689&rft_els_id=S0079610707000582&rfr_iscdi=true