Surfactant-Induced Amorphous Aggregation of Tobacco Mosaic Virus Coat Protein: A Physical Methods Approach
The interactions of non‐ionic surfactant Triton X‐100 and the coat protein of tobacco mosaic virus, which is an established model for both ordered and non‐ordered protein aggregation, were studied using turbidimetry, differential scanning calorimetry, isothermal titration calorimetry, and dynamic li...
Gespeichert in:
Veröffentlicht in: | Macromolecular bioscience 2008-02, Vol.8 (2), p.199-209 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 209 |
---|---|
container_issue | 2 |
container_start_page | 199 |
container_title | Macromolecular bioscience |
container_volume | 8 |
creator | Panyukov, Yuliy V. Nemykh, Maria A. Dobrov, Eugeny N. Drachev, Vladimir A. |
description | The interactions of non‐ionic surfactant Triton X‐100 and the coat protein of tobacco mosaic virus, which is an established model for both ordered and non‐ordered protein aggregation, were studied using turbidimetry, differential scanning calorimetry, isothermal titration calorimetry, and dynamic light scattering. It was found that at the critical aggregation concentration (equal to critical micelle concentration) of 138 × 10−6 M, Triton X‐100 induces partial denaturation of tobacco mosaic virus coat protein molecules followed by protein amorphous aggregation. Protein aggregation has profound ionic strength dependence and proceeds due to hydrophobic sticking of surfactant‐protein complexes (start aggregates) with initial radii of 46 nm. It has been suggested that the anionic surfactant sodium dodecyl sulfate forms mixed micelles with Triton X‐100 and therefore reverses protein amorphous aggregation with release of protein molecules from the amorphous aggregates. A stoichiometric ratio of 5 was found for Triton X‐100‐sodium dodecyl sulfate interactions. |
doi_str_mv | 10.1002/mabi.200700145 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70329092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20911740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4435-a3fb205686557bed0a624a3d87a3aeddeca0bf93821014759d2165407e44f9853</originalsourceid><addsrcrecordid>eNqFkU2P0zAQhiMEYj_gyhH5xC3F3064hQp2K7ZQiWU5WhPHab0kcbETsf33uGpVuPU0c3jeZzR6s-wNwTOCMX3fQ-1mFGOFMeHiWXZJJJG5IKV4ftoLdZFdxfiYEFWU9GV2kWYhGZWX2eP3KbRgRhjGfDE0k7ENqnofths_RVSt18GuYXR-QL5F974GYzxa-gjOoAcXEjP3MKJV8KN1wwdUodVmF52BDi3tuPFNkmy3wYPZvMpetNBF-_o4r7Mfnz_dz2_zu283i3l1lxvOmciBtTXFQhZSCFXbBoOkHFhTKGBgm8YawHVbsoKS9LISZUOJFBwry3lbFoJdZ-8O3nT292TjqHsXje06GGx6SivMaIlLehZklHCKGT4LUlwSovgenB1AE3yMwbZ6G1wPYacJ1vu-9L4vfeorBd4ezVPd2-YffiwoAeUB-OM6uzuj08vq4-J_eX7Iujjap1MWwi8tFVNC__x6o7-Q21UhiweN2V_EbK_e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20911740</pqid></control><display><type>article</type><title>Surfactant-Induced Amorphous Aggregation of Tobacco Mosaic Virus Coat Protein: A Physical Methods Approach</title><source>Wiley-Blackwell Journals</source><source>MEDLINE</source><creator>Panyukov, Yuliy V. ; Nemykh, Maria A. ; Dobrov, Eugeny N. ; Drachev, Vladimir A.</creator><creatorcontrib>Panyukov, Yuliy V. ; Nemykh, Maria A. ; Dobrov, Eugeny N. ; Drachev, Vladimir A.</creatorcontrib><description>The interactions of non‐ionic surfactant Triton X‐100 and the coat protein of tobacco mosaic virus, which is an established model for both ordered and non‐ordered protein aggregation, were studied using turbidimetry, differential scanning calorimetry, isothermal titration calorimetry, and dynamic light scattering. It was found that at the critical aggregation concentration (equal to critical micelle concentration) of 138 × 10−6 M, Triton X‐100 induces partial denaturation of tobacco mosaic virus coat protein molecules followed by protein amorphous aggregation. Protein aggregation has profound ionic strength dependence and proceeds due to hydrophobic sticking of surfactant‐protein complexes (start aggregates) with initial radii of 46 nm. It has been suggested that the anionic surfactant sodium dodecyl sulfate forms mixed micelles with Triton X‐100 and therefore reverses protein amorphous aggregation with release of protein molecules from the amorphous aggregates. A stoichiometric ratio of 5 was found for Triton X‐100‐sodium dodecyl sulfate interactions.</description><identifier>ISSN: 1616-5187</identifier><identifier>EISSN: 1616-5195</identifier><identifier>DOI: 10.1002/mabi.200700145</identifier><identifier>PMID: 17886326</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>aggregation ; calorimetry ; Calorimetry, Differential Scanning ; Capsid Proteins - chemistry ; Chemistry, Physical - methods ; dynamic light scattering ; Micelles ; Nephelometry and Turbidimetry ; Octoxynol - chemistry ; proteins ; Sodium Dodecyl Sulfate - chemistry ; Surface-Active Agents - chemistry ; surfactants ; Tobacco mosaic virus ; Tobacco Mosaic Virus - chemistry</subject><ispartof>Macromolecular bioscience, 2008-02, Vol.8 (2), p.199-209</ispartof><rights>Copyright © 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4435-a3fb205686557bed0a624a3d87a3aeddeca0bf93821014759d2165407e44f9853</citedby><cites>FETCH-LOGICAL-c4435-a3fb205686557bed0a624a3d87a3aeddeca0bf93821014759d2165407e44f9853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmabi.200700145$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmabi.200700145$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17886326$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Panyukov, Yuliy V.</creatorcontrib><creatorcontrib>Nemykh, Maria A.</creatorcontrib><creatorcontrib>Dobrov, Eugeny N.</creatorcontrib><creatorcontrib>Drachev, Vladimir A.</creatorcontrib><title>Surfactant-Induced Amorphous Aggregation of Tobacco Mosaic Virus Coat Protein: A Physical Methods Approach</title><title>Macromolecular bioscience</title><addtitle>Macromol. Biosci</addtitle><description>The interactions of non‐ionic surfactant Triton X‐100 and the coat protein of tobacco mosaic virus, which is an established model for both ordered and non‐ordered protein aggregation, were studied using turbidimetry, differential scanning calorimetry, isothermal titration calorimetry, and dynamic light scattering. It was found that at the critical aggregation concentration (equal to critical micelle concentration) of 138 × 10−6 M, Triton X‐100 induces partial denaturation of tobacco mosaic virus coat protein molecules followed by protein amorphous aggregation. Protein aggregation has profound ionic strength dependence and proceeds due to hydrophobic sticking of surfactant‐protein complexes (start aggregates) with initial radii of 46 nm. It has been suggested that the anionic surfactant sodium dodecyl sulfate forms mixed micelles with Triton X‐100 and therefore reverses protein amorphous aggregation with release of protein molecules from the amorphous aggregates. A stoichiometric ratio of 5 was found for Triton X‐100‐sodium dodecyl sulfate interactions.</description><subject>aggregation</subject><subject>calorimetry</subject><subject>Calorimetry, Differential Scanning</subject><subject>Capsid Proteins - chemistry</subject><subject>Chemistry, Physical - methods</subject><subject>dynamic light scattering</subject><subject>Micelles</subject><subject>Nephelometry and Turbidimetry</subject><subject>Octoxynol - chemistry</subject><subject>proteins</subject><subject>Sodium Dodecyl Sulfate - chemistry</subject><subject>Surface-Active Agents - chemistry</subject><subject>surfactants</subject><subject>Tobacco mosaic virus</subject><subject>Tobacco Mosaic Virus - chemistry</subject><issn>1616-5187</issn><issn>1616-5195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU2P0zAQhiMEYj_gyhH5xC3F3064hQp2K7ZQiWU5WhPHab0kcbETsf33uGpVuPU0c3jeZzR6s-wNwTOCMX3fQ-1mFGOFMeHiWXZJJJG5IKV4ftoLdZFdxfiYEFWU9GV2kWYhGZWX2eP3KbRgRhjGfDE0k7ENqnofths_RVSt18GuYXR-QL5F974GYzxa-gjOoAcXEjP3MKJV8KN1wwdUodVmF52BDi3tuPFNkmy3wYPZvMpetNBF-_o4r7Mfnz_dz2_zu283i3l1lxvOmciBtTXFQhZSCFXbBoOkHFhTKGBgm8YawHVbsoKS9LISZUOJFBwry3lbFoJdZ-8O3nT292TjqHsXje06GGx6SivMaIlLehZklHCKGT4LUlwSovgenB1AE3yMwbZ6G1wPYacJ1vu-9L4vfeorBd4ezVPd2-YffiwoAeUB-OM6uzuj08vq4-J_eX7Iujjap1MWwi8tFVNC__x6o7-Q21UhiweN2V_EbK_e</recordid><startdate>20080211</startdate><enddate>20080211</enddate><creator>Panyukov, Yuliy V.</creator><creator>Nemykh, Maria A.</creator><creator>Dobrov, Eugeny N.</creator><creator>Drachev, Vladimir A.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7SR</scope><scope>7U5</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20080211</creationdate><title>Surfactant-Induced Amorphous Aggregation of Tobacco Mosaic Virus Coat Protein: A Physical Methods Approach</title><author>Panyukov, Yuliy V. ; Nemykh, Maria A. ; Dobrov, Eugeny N. ; Drachev, Vladimir A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4435-a3fb205686557bed0a624a3d87a3aeddeca0bf93821014759d2165407e44f9853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>aggregation</topic><topic>calorimetry</topic><topic>Calorimetry, Differential Scanning</topic><topic>Capsid Proteins - chemistry</topic><topic>Chemistry, Physical - methods</topic><topic>dynamic light scattering</topic><topic>Micelles</topic><topic>Nephelometry and Turbidimetry</topic><topic>Octoxynol - chemistry</topic><topic>proteins</topic><topic>Sodium Dodecyl Sulfate - chemistry</topic><topic>Surface-Active Agents - chemistry</topic><topic>surfactants</topic><topic>Tobacco mosaic virus</topic><topic>Tobacco Mosaic Virus - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Panyukov, Yuliy V.</creatorcontrib><creatorcontrib>Nemykh, Maria A.</creatorcontrib><creatorcontrib>Dobrov, Eugeny N.</creatorcontrib><creatorcontrib>Drachev, Vladimir A.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Macromolecular bioscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Panyukov, Yuliy V.</au><au>Nemykh, Maria A.</au><au>Dobrov, Eugeny N.</au><au>Drachev, Vladimir A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surfactant-Induced Amorphous Aggregation of Tobacco Mosaic Virus Coat Protein: A Physical Methods Approach</atitle><jtitle>Macromolecular bioscience</jtitle><addtitle>Macromol. Biosci</addtitle><date>2008-02-11</date><risdate>2008</risdate><volume>8</volume><issue>2</issue><spage>199</spage><epage>209</epage><pages>199-209</pages><issn>1616-5187</issn><eissn>1616-5195</eissn><abstract>The interactions of non‐ionic surfactant Triton X‐100 and the coat protein of tobacco mosaic virus, which is an established model for both ordered and non‐ordered protein aggregation, were studied using turbidimetry, differential scanning calorimetry, isothermal titration calorimetry, and dynamic light scattering. It was found that at the critical aggregation concentration (equal to critical micelle concentration) of 138 × 10−6 M, Triton X‐100 induces partial denaturation of tobacco mosaic virus coat protein molecules followed by protein amorphous aggregation. Protein aggregation has profound ionic strength dependence and proceeds due to hydrophobic sticking of surfactant‐protein complexes (start aggregates) with initial radii of 46 nm. It has been suggested that the anionic surfactant sodium dodecyl sulfate forms mixed micelles with Triton X‐100 and therefore reverses protein amorphous aggregation with release of protein molecules from the amorphous aggregates. A stoichiometric ratio of 5 was found for Triton X‐100‐sodium dodecyl sulfate interactions.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>17886326</pmid><doi>10.1002/mabi.200700145</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-5187 |
ispartof | Macromolecular bioscience, 2008-02, Vol.8 (2), p.199-209 |
issn | 1616-5187 1616-5195 |
language | eng |
recordid | cdi_proquest_miscellaneous_70329092 |
source | Wiley-Blackwell Journals; MEDLINE |
subjects | aggregation calorimetry Calorimetry, Differential Scanning Capsid Proteins - chemistry Chemistry, Physical - methods dynamic light scattering Micelles Nephelometry and Turbidimetry Octoxynol - chemistry proteins Sodium Dodecyl Sulfate - chemistry Surface-Active Agents - chemistry surfactants Tobacco mosaic virus Tobacco Mosaic Virus - chemistry |
title | Surfactant-Induced Amorphous Aggregation of Tobacco Mosaic Virus Coat Protein: A Physical Methods Approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A32%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surfactant-Induced%20Amorphous%20Aggregation%20of%20Tobacco%20Mosaic%20Virus%20Coat%20Protein:%20A%20Physical%20Methods%20Approach&rft.jtitle=Macromolecular%20bioscience&rft.au=Panyukov,%20Yuliy%20V.&rft.date=2008-02-11&rft.volume=8&rft.issue=2&rft.spage=199&rft.epage=209&rft.pages=199-209&rft.issn=1616-5187&rft.eissn=1616-5195&rft_id=info:doi/10.1002/mabi.200700145&rft_dat=%3Cproquest_cross%3E20911740%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20911740&rft_id=info:pmid/17886326&rfr_iscdi=true |