Surfactant-Induced Amorphous Aggregation of Tobacco Mosaic Virus Coat Protein: A Physical Methods Approach

The interactions of non‐ionic surfactant Triton X‐100 and the coat protein of tobacco mosaic virus, which is an established model for both ordered and non‐ordered protein aggregation, were studied using turbidimetry, differential scanning calorimetry, isothermal titration calorimetry, and dynamic li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular bioscience 2008-02, Vol.8 (2), p.199-209
Hauptverfasser: Panyukov, Yuliy V., Nemykh, Maria A., Dobrov, Eugeny N., Drachev, Vladimir A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 209
container_issue 2
container_start_page 199
container_title Macromolecular bioscience
container_volume 8
creator Panyukov, Yuliy V.
Nemykh, Maria A.
Dobrov, Eugeny N.
Drachev, Vladimir A.
description The interactions of non‐ionic surfactant Triton X‐100 and the coat protein of tobacco mosaic virus, which is an established model for both ordered and non‐ordered protein aggregation, were studied using turbidimetry, differential scanning calorimetry, isothermal titration calorimetry, and dynamic light scattering. It was found that at the critical aggregation concentration (equal to critical micelle concentration) of 138 × 10−6 M, Triton X‐100 induces partial denaturation of tobacco mosaic virus coat protein molecules followed by protein amorphous aggregation. Protein aggregation has profound ionic strength dependence and proceeds due to hydrophobic sticking of surfactant‐protein complexes (start aggregates) with initial radii of 46 nm. It has been suggested that the anionic surfactant sodium dodecyl sulfate forms mixed micelles with Triton X‐100 and therefore reverses protein amorphous aggregation with release of protein molecules from the amorphous aggregates. A stoichiometric ratio of 5 was found for Triton X‐100‐sodium dodecyl sulfate interactions.
doi_str_mv 10.1002/mabi.200700145
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70329092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20911740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4435-a3fb205686557bed0a624a3d87a3aeddeca0bf93821014759d2165407e44f9853</originalsourceid><addsrcrecordid>eNqFkU2P0zAQhiMEYj_gyhH5xC3F3064hQp2K7ZQiWU5WhPHab0kcbETsf33uGpVuPU0c3jeZzR6s-wNwTOCMX3fQ-1mFGOFMeHiWXZJJJG5IKV4ftoLdZFdxfiYEFWU9GV2kWYhGZWX2eP3KbRgRhjGfDE0k7ENqnofths_RVSt18GuYXR-QL5F974GYzxa-gjOoAcXEjP3MKJV8KN1wwdUodVmF52BDi3tuPFNkmy3wYPZvMpetNBF-_o4r7Mfnz_dz2_zu283i3l1lxvOmciBtTXFQhZSCFXbBoOkHFhTKGBgm8YawHVbsoKS9LISZUOJFBwry3lbFoJdZ-8O3nT292TjqHsXje06GGx6SivMaIlLehZklHCKGT4LUlwSovgenB1AE3yMwbZ6G1wPYacJ1vu-9L4vfeorBd4ezVPd2-YffiwoAeUB-OM6uzuj08vq4-J_eX7Iujjap1MWwi8tFVNC__x6o7-Q21UhiweN2V_EbK_e</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20911740</pqid></control><display><type>article</type><title>Surfactant-Induced Amorphous Aggregation of Tobacco Mosaic Virus Coat Protein: A Physical Methods Approach</title><source>Wiley-Blackwell Journals</source><source>MEDLINE</source><creator>Panyukov, Yuliy V. ; Nemykh, Maria A. ; Dobrov, Eugeny N. ; Drachev, Vladimir A.</creator><creatorcontrib>Panyukov, Yuliy V. ; Nemykh, Maria A. ; Dobrov, Eugeny N. ; Drachev, Vladimir A.</creatorcontrib><description>The interactions of non‐ionic surfactant Triton X‐100 and the coat protein of tobacco mosaic virus, which is an established model for both ordered and non‐ordered protein aggregation, were studied using turbidimetry, differential scanning calorimetry, isothermal titration calorimetry, and dynamic light scattering. It was found that at the critical aggregation concentration (equal to critical micelle concentration) of 138 × 10−6 M, Triton X‐100 induces partial denaturation of tobacco mosaic virus coat protein molecules followed by protein amorphous aggregation. Protein aggregation has profound ionic strength dependence and proceeds due to hydrophobic sticking of surfactant‐protein complexes (start aggregates) with initial radii of 46 nm. It has been suggested that the anionic surfactant sodium dodecyl sulfate forms mixed micelles with Triton X‐100 and therefore reverses protein amorphous aggregation with release of protein molecules from the amorphous aggregates. A stoichiometric ratio of 5 was found for Triton X‐100‐sodium dodecyl sulfate interactions.</description><identifier>ISSN: 1616-5187</identifier><identifier>EISSN: 1616-5195</identifier><identifier>DOI: 10.1002/mabi.200700145</identifier><identifier>PMID: 17886326</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>aggregation ; calorimetry ; Calorimetry, Differential Scanning ; Capsid Proteins - chemistry ; Chemistry, Physical - methods ; dynamic light scattering ; Micelles ; Nephelometry and Turbidimetry ; Octoxynol - chemistry ; proteins ; Sodium Dodecyl Sulfate - chemistry ; Surface-Active Agents - chemistry ; surfactants ; Tobacco mosaic virus ; Tobacco Mosaic Virus - chemistry</subject><ispartof>Macromolecular bioscience, 2008-02, Vol.8 (2), p.199-209</ispartof><rights>Copyright © 2008 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4435-a3fb205686557bed0a624a3d87a3aeddeca0bf93821014759d2165407e44f9853</citedby><cites>FETCH-LOGICAL-c4435-a3fb205686557bed0a624a3d87a3aeddeca0bf93821014759d2165407e44f9853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmabi.200700145$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmabi.200700145$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17886326$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Panyukov, Yuliy V.</creatorcontrib><creatorcontrib>Nemykh, Maria A.</creatorcontrib><creatorcontrib>Dobrov, Eugeny N.</creatorcontrib><creatorcontrib>Drachev, Vladimir A.</creatorcontrib><title>Surfactant-Induced Amorphous Aggregation of Tobacco Mosaic Virus Coat Protein: A Physical Methods Approach</title><title>Macromolecular bioscience</title><addtitle>Macromol. Biosci</addtitle><description>The interactions of non‐ionic surfactant Triton X‐100 and the coat protein of tobacco mosaic virus, which is an established model for both ordered and non‐ordered protein aggregation, were studied using turbidimetry, differential scanning calorimetry, isothermal titration calorimetry, and dynamic light scattering. It was found that at the critical aggregation concentration (equal to critical micelle concentration) of 138 × 10−6 M, Triton X‐100 induces partial denaturation of tobacco mosaic virus coat protein molecules followed by protein amorphous aggregation. Protein aggregation has profound ionic strength dependence and proceeds due to hydrophobic sticking of surfactant‐protein complexes (start aggregates) with initial radii of 46 nm. It has been suggested that the anionic surfactant sodium dodecyl sulfate forms mixed micelles with Triton X‐100 and therefore reverses protein amorphous aggregation with release of protein molecules from the amorphous aggregates. A stoichiometric ratio of 5 was found for Triton X‐100‐sodium dodecyl sulfate interactions.</description><subject>aggregation</subject><subject>calorimetry</subject><subject>Calorimetry, Differential Scanning</subject><subject>Capsid Proteins - chemistry</subject><subject>Chemistry, Physical - methods</subject><subject>dynamic light scattering</subject><subject>Micelles</subject><subject>Nephelometry and Turbidimetry</subject><subject>Octoxynol - chemistry</subject><subject>proteins</subject><subject>Sodium Dodecyl Sulfate - chemistry</subject><subject>Surface-Active Agents - chemistry</subject><subject>surfactants</subject><subject>Tobacco mosaic virus</subject><subject>Tobacco Mosaic Virus - chemistry</subject><issn>1616-5187</issn><issn>1616-5195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU2P0zAQhiMEYj_gyhH5xC3F3064hQp2K7ZQiWU5WhPHab0kcbETsf33uGpVuPU0c3jeZzR6s-wNwTOCMX3fQ-1mFGOFMeHiWXZJJJG5IKV4ftoLdZFdxfiYEFWU9GV2kWYhGZWX2eP3KbRgRhjGfDE0k7ENqnofths_RVSt18GuYXR-QL5F974GYzxa-gjOoAcXEjP3MKJV8KN1wwdUodVmF52BDi3tuPFNkmy3wYPZvMpetNBF-_o4r7Mfnz_dz2_zu283i3l1lxvOmciBtTXFQhZSCFXbBoOkHFhTKGBgm8YawHVbsoKS9LISZUOJFBwry3lbFoJdZ-8O3nT292TjqHsXje06GGx6SivMaIlLehZklHCKGT4LUlwSovgenB1AE3yMwbZ6G1wPYacJ1vu-9L4vfeorBd4ezVPd2-YffiwoAeUB-OM6uzuj08vq4-J_eX7Iujjap1MWwi8tFVNC__x6o7-Q21UhiweN2V_EbK_e</recordid><startdate>20080211</startdate><enddate>20080211</enddate><creator>Panyukov, Yuliy V.</creator><creator>Nemykh, Maria A.</creator><creator>Dobrov, Eugeny N.</creator><creator>Drachev, Vladimir A.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7SR</scope><scope>7U5</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20080211</creationdate><title>Surfactant-Induced Amorphous Aggregation of Tobacco Mosaic Virus Coat Protein: A Physical Methods Approach</title><author>Panyukov, Yuliy V. ; Nemykh, Maria A. ; Dobrov, Eugeny N. ; Drachev, Vladimir A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4435-a3fb205686557bed0a624a3d87a3aeddeca0bf93821014759d2165407e44f9853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>aggregation</topic><topic>calorimetry</topic><topic>Calorimetry, Differential Scanning</topic><topic>Capsid Proteins - chemistry</topic><topic>Chemistry, Physical - methods</topic><topic>dynamic light scattering</topic><topic>Micelles</topic><topic>Nephelometry and Turbidimetry</topic><topic>Octoxynol - chemistry</topic><topic>proteins</topic><topic>Sodium Dodecyl Sulfate - chemistry</topic><topic>Surface-Active Agents - chemistry</topic><topic>surfactants</topic><topic>Tobacco mosaic virus</topic><topic>Tobacco Mosaic Virus - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Panyukov, Yuliy V.</creatorcontrib><creatorcontrib>Nemykh, Maria A.</creatorcontrib><creatorcontrib>Dobrov, Eugeny N.</creatorcontrib><creatorcontrib>Drachev, Vladimir A.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Macromolecular bioscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Panyukov, Yuliy V.</au><au>Nemykh, Maria A.</au><au>Dobrov, Eugeny N.</au><au>Drachev, Vladimir A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surfactant-Induced Amorphous Aggregation of Tobacco Mosaic Virus Coat Protein: A Physical Methods Approach</atitle><jtitle>Macromolecular bioscience</jtitle><addtitle>Macromol. Biosci</addtitle><date>2008-02-11</date><risdate>2008</risdate><volume>8</volume><issue>2</issue><spage>199</spage><epage>209</epage><pages>199-209</pages><issn>1616-5187</issn><eissn>1616-5195</eissn><abstract>The interactions of non‐ionic surfactant Triton X‐100 and the coat protein of tobacco mosaic virus, which is an established model for both ordered and non‐ordered protein aggregation, were studied using turbidimetry, differential scanning calorimetry, isothermal titration calorimetry, and dynamic light scattering. It was found that at the critical aggregation concentration (equal to critical micelle concentration) of 138 × 10−6 M, Triton X‐100 induces partial denaturation of tobacco mosaic virus coat protein molecules followed by protein amorphous aggregation. Protein aggregation has profound ionic strength dependence and proceeds due to hydrophobic sticking of surfactant‐protein complexes (start aggregates) with initial radii of 46 nm. It has been suggested that the anionic surfactant sodium dodecyl sulfate forms mixed micelles with Triton X‐100 and therefore reverses protein amorphous aggregation with release of protein molecules from the amorphous aggregates. A stoichiometric ratio of 5 was found for Triton X‐100‐sodium dodecyl sulfate interactions.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>17886326</pmid><doi>10.1002/mabi.200700145</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1616-5187
ispartof Macromolecular bioscience, 2008-02, Vol.8 (2), p.199-209
issn 1616-5187
1616-5195
language eng
recordid cdi_proquest_miscellaneous_70329092
source Wiley-Blackwell Journals; MEDLINE
subjects aggregation
calorimetry
Calorimetry, Differential Scanning
Capsid Proteins - chemistry
Chemistry, Physical - methods
dynamic light scattering
Micelles
Nephelometry and Turbidimetry
Octoxynol - chemistry
proteins
Sodium Dodecyl Sulfate - chemistry
Surface-Active Agents - chemistry
surfactants
Tobacco mosaic virus
Tobacco Mosaic Virus - chemistry
title Surfactant-Induced Amorphous Aggregation of Tobacco Mosaic Virus Coat Protein: A Physical Methods Approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A32%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surfactant-Induced%20Amorphous%20Aggregation%20of%20Tobacco%20Mosaic%20Virus%20Coat%20Protein:%20A%20Physical%20Methods%20Approach&rft.jtitle=Macromolecular%20bioscience&rft.au=Panyukov,%20Yuliy%20V.&rft.date=2008-02-11&rft.volume=8&rft.issue=2&rft.spage=199&rft.epage=209&rft.pages=199-209&rft.issn=1616-5187&rft.eissn=1616-5195&rft_id=info:doi/10.1002/mabi.200700145&rft_dat=%3Cproquest_cross%3E20911740%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20911740&rft_id=info:pmid/17886326&rfr_iscdi=true