Finite element modeling of arachnid slit sensilla--I. The mechanical significance of different slit arrays

Arachnid strain sensitive slit sensilla are elongated openings in the cuticle with aspect ratios (slit length l / slit width b) of up to 100. Planar Finite Element (FE) models are used to calculate the relative slit face displacements, D c, at the centers of single slits and of arrangements of mecha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Comparative Physiology 2007-04, Vol.193 (4), p.445-459
Hauptverfasser: Hößl, Bernhard, Böhm, Helmut J, Rammerstorfer, Franz G, Barth, Friedrich G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 459
container_issue 4
container_start_page 445
container_title Journal of Comparative Physiology
container_volume 193
creator Hößl, Bernhard
Böhm, Helmut J
Rammerstorfer, Franz G
Barth, Friedrich G
description Arachnid strain sensitive slit sensilla are elongated openings in the cuticle with aspect ratios (slit length l / slit width b) of up to 100. Planar Finite Element (FE) models are used to calculate the relative slit face displacements, D c, at the centers of single slits and of arrangements of mechanically interacting slits under uni-axial compressive far-field loads. Our main objective is to quantitatively study the role of the following geometrical parameters in stimulus transformation: aspect ratio, slit shape, geometry of the slits' centerlines, load direction, lateral distance S, longitudinal shift λ, and difference in slit length Δl between neighboring slits. Slit face displacements are primarily sensitive to slit length and load direction but little affected by aspect ratios between 20 and 100. In stacks of five parallel slits at lateral distances typical of lyriform organs (S = 0.03 l) the longitudinal shift λ substantially influences slit compression. A change of λ from 0 to 0.85 l causes changes of up to 420% in D c. Even minor morphological variations in the arrangements can substantially influence the stimulus transformation. The site of transduction in real slit sensilla does not always coincide with the position of maximum slit compression predicted by simplified models.
doi_str_mv 10.1007/s00359-006-0201-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70327320</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70327320</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-7d70adaa4a7ad8b4a42942183aa4101d21bcf1768ab659d2db516b79d7ad5d7b3</originalsourceid><addsrcrecordid>eNpdkbFu2zAQhomiQe0mfYAuLZGhG507UhKlsQiaJoCBDElm4iRSNg2Jckl58NuXjg0U6HTE4ft-HPgz9hVhhQD6LgGoshEAlQAJKI4f2BILJQWqEj-yJagChC6bYsE-p7QDAIkSP7EFaqwrWTRLtnvwwc-Ou8GNLsx8nKwbfNjwqecUqdsGb3ka_MyTC8kPAwnxtOKvW8dH120p-I4Gnvwm-D4_Q-dOpvV97-Ip712lGOmYbthVT0NyXy7zmr09_Hq9fxTr599P9z_XolMlzEJbDWSJCtJk67agQjaFxFrlFQJaiW3Xo65qaquysdK2JVatbmzGS6tbdc1-nHP3cfpzcGk2o0-dy6cHNx2S0aCkVhIyePsfuJsOMeTbTIWqqrVSdYbwDHVxSim63uyjHykeDYI5tWDOLZjcgjm1YI7Z-XYJPrSjs_-My7dn4PsZ6GkytIk-mbeX7KqcV2FTKvUXXwiMUA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>613687338</pqid></control><display><type>article</type><title>Finite element modeling of arachnid slit sensilla--I. The mechanical significance of different slit arrays</title><source>MEDLINE</source><source>Springer Online Journals</source><creator>Hößl, Bernhard ; Böhm, Helmut J ; Rammerstorfer, Franz G ; Barth, Friedrich G</creator><creatorcontrib>Hößl, Bernhard ; Böhm, Helmut J ; Rammerstorfer, Franz G ; Barth, Friedrich G</creatorcontrib><description>Arachnid strain sensitive slit sensilla are elongated openings in the cuticle with aspect ratios (slit length l / slit width b) of up to 100. Planar Finite Element (FE) models are used to calculate the relative slit face displacements, D c, at the centers of single slits and of arrangements of mechanically interacting slits under uni-axial compressive far-field loads. Our main objective is to quantitatively study the role of the following geometrical parameters in stimulus transformation: aspect ratio, slit shape, geometry of the slits' centerlines, load direction, lateral distance S, longitudinal shift λ, and difference in slit length Δl between neighboring slits. Slit face displacements are primarily sensitive to slit length and load direction but little affected by aspect ratios between 20 and 100. In stacks of five parallel slits at lateral distances typical of lyriform organs (S = 0.03 l) the longitudinal shift λ substantially influences slit compression. A change of λ from 0 to 0.85 l causes changes of up to 420% in D c. Even minor morphological variations in the arrangements can substantially influence the stimulus transformation. The site of transduction in real slit sensilla does not always coincide with the position of maximum slit compression predicted by simplified models.</description><identifier>ISSN: 0340-7594</identifier><identifier>EISSN: 1432-1351</identifier><identifier>DOI: 10.1007/s00359-006-0201-y</identifier><identifier>PMID: 17186249</identifier><language>eng</language><publisher>Germany: Berlin/Heidelberg : Springer-Verlag</publisher><subject>Animals ; Arachnida - physiology ; Arachnida - ultrastructure ; Computer Simulation ; Extremities - innervation ; Extremities - physiology ; Finite Element Analysis ; Mechanoreceptors - physiology ; Mechanoreceptors - ultrastructure ; Mechanotransduction, Cellular - physiology ; Neurons, Afferent - physiology ; Neurons, Afferent - ultrastructure ; Spiders - physiology ; Spiders - ultrastructure ; Stress, Mechanical ; Weight-Bearing - physiology</subject><ispartof>Journal of Comparative Physiology, 2007-04, Vol.193 (4), p.445-459</ispartof><rights>Springer-Verlag 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-7d70adaa4a7ad8b4a42942183aa4101d21bcf1768ab659d2db516b79d7ad5d7b3</citedby><cites>FETCH-LOGICAL-c350t-7d70adaa4a7ad8b4a42942183aa4101d21bcf1768ab659d2db516b79d7ad5d7b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17186249$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hößl, Bernhard</creatorcontrib><creatorcontrib>Böhm, Helmut J</creatorcontrib><creatorcontrib>Rammerstorfer, Franz G</creatorcontrib><creatorcontrib>Barth, Friedrich G</creatorcontrib><title>Finite element modeling of arachnid slit sensilla--I. The mechanical significance of different slit arrays</title><title>Journal of Comparative Physiology</title><addtitle>J Comp Physiol A Neuroethol Sens Neural Behav Physiol</addtitle><description>Arachnid strain sensitive slit sensilla are elongated openings in the cuticle with aspect ratios (slit length l / slit width b) of up to 100. Planar Finite Element (FE) models are used to calculate the relative slit face displacements, D c, at the centers of single slits and of arrangements of mechanically interacting slits under uni-axial compressive far-field loads. Our main objective is to quantitatively study the role of the following geometrical parameters in stimulus transformation: aspect ratio, slit shape, geometry of the slits' centerlines, load direction, lateral distance S, longitudinal shift λ, and difference in slit length Δl between neighboring slits. Slit face displacements are primarily sensitive to slit length and load direction but little affected by aspect ratios between 20 and 100. In stacks of five parallel slits at lateral distances typical of lyriform organs (S = 0.03 l) the longitudinal shift λ substantially influences slit compression. A change of λ from 0 to 0.85 l causes changes of up to 420% in D c. Even minor morphological variations in the arrangements can substantially influence the stimulus transformation. The site of transduction in real slit sensilla does not always coincide with the position of maximum slit compression predicted by simplified models.</description><subject>Animals</subject><subject>Arachnida - physiology</subject><subject>Arachnida - ultrastructure</subject><subject>Computer Simulation</subject><subject>Extremities - innervation</subject><subject>Extremities - physiology</subject><subject>Finite Element Analysis</subject><subject>Mechanoreceptors - physiology</subject><subject>Mechanoreceptors - ultrastructure</subject><subject>Mechanotransduction, Cellular - physiology</subject><subject>Neurons, Afferent - physiology</subject><subject>Neurons, Afferent - ultrastructure</subject><subject>Spiders - physiology</subject><subject>Spiders - ultrastructure</subject><subject>Stress, Mechanical</subject><subject>Weight-Bearing - physiology</subject><issn>0340-7594</issn><issn>1432-1351</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkbFu2zAQhomiQe0mfYAuLZGhG507UhKlsQiaJoCBDElm4iRSNg2Jckl58NuXjg0U6HTE4ft-HPgz9hVhhQD6LgGoshEAlQAJKI4f2BILJQWqEj-yJagChC6bYsE-p7QDAIkSP7EFaqwrWTRLtnvwwc-Ou8GNLsx8nKwbfNjwqecUqdsGb3ka_MyTC8kPAwnxtOKvW8dH120p-I4Gnvwm-D4_Q-dOpvV97-Ip712lGOmYbthVT0NyXy7zmr09_Hq9fxTr599P9z_XolMlzEJbDWSJCtJk67agQjaFxFrlFQJaiW3Xo65qaquysdK2JVatbmzGS6tbdc1-nHP3cfpzcGk2o0-dy6cHNx2S0aCkVhIyePsfuJsOMeTbTIWqqrVSdYbwDHVxSim63uyjHykeDYI5tWDOLZjcgjm1YI7Z-XYJPrSjs_-My7dn4PsZ6GkytIk-mbeX7KqcV2FTKvUXXwiMUA</recordid><startdate>20070401</startdate><enddate>20070401</enddate><creator>Hößl, Bernhard</creator><creator>Böhm, Helmut J</creator><creator>Rammerstorfer, Franz G</creator><creator>Barth, Friedrich G</creator><general>Berlin/Heidelberg : Springer-Verlag</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20070401</creationdate><title>Finite element modeling of arachnid slit sensilla--I. The mechanical significance of different slit arrays</title><author>Hößl, Bernhard ; Böhm, Helmut J ; Rammerstorfer, Franz G ; Barth, Friedrich G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-7d70adaa4a7ad8b4a42942183aa4101d21bcf1768ab659d2db516b79d7ad5d7b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animals</topic><topic>Arachnida - physiology</topic><topic>Arachnida - ultrastructure</topic><topic>Computer Simulation</topic><topic>Extremities - innervation</topic><topic>Extremities - physiology</topic><topic>Finite Element Analysis</topic><topic>Mechanoreceptors - physiology</topic><topic>Mechanoreceptors - ultrastructure</topic><topic>Mechanotransduction, Cellular - physiology</topic><topic>Neurons, Afferent - physiology</topic><topic>Neurons, Afferent - ultrastructure</topic><topic>Spiders - physiology</topic><topic>Spiders - ultrastructure</topic><topic>Stress, Mechanical</topic><topic>Weight-Bearing - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hößl, Bernhard</creatorcontrib><creatorcontrib>Böhm, Helmut J</creatorcontrib><creatorcontrib>Rammerstorfer, Franz G</creatorcontrib><creatorcontrib>Barth, Friedrich G</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>ProQuest - Health &amp; Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of Comparative Physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hößl, Bernhard</au><au>Böhm, Helmut J</au><au>Rammerstorfer, Franz G</au><au>Barth, Friedrich G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite element modeling of arachnid slit sensilla--I. The mechanical significance of different slit arrays</atitle><jtitle>Journal of Comparative Physiology</jtitle><addtitle>J Comp Physiol A Neuroethol Sens Neural Behav Physiol</addtitle><date>2007-04-01</date><risdate>2007</risdate><volume>193</volume><issue>4</issue><spage>445</spage><epage>459</epage><pages>445-459</pages><issn>0340-7594</issn><eissn>1432-1351</eissn><abstract>Arachnid strain sensitive slit sensilla are elongated openings in the cuticle with aspect ratios (slit length l / slit width b) of up to 100. Planar Finite Element (FE) models are used to calculate the relative slit face displacements, D c, at the centers of single slits and of arrangements of mechanically interacting slits under uni-axial compressive far-field loads. Our main objective is to quantitatively study the role of the following geometrical parameters in stimulus transformation: aspect ratio, slit shape, geometry of the slits' centerlines, load direction, lateral distance S, longitudinal shift λ, and difference in slit length Δl between neighboring slits. Slit face displacements are primarily sensitive to slit length and load direction but little affected by aspect ratios between 20 and 100. In stacks of five parallel slits at lateral distances typical of lyriform organs (S = 0.03 l) the longitudinal shift λ substantially influences slit compression. A change of λ from 0 to 0.85 l causes changes of up to 420% in D c. Even minor morphological variations in the arrangements can substantially influence the stimulus transformation. The site of transduction in real slit sensilla does not always coincide with the position of maximum slit compression predicted by simplified models.</abstract><cop>Germany</cop><pub>Berlin/Heidelberg : Springer-Verlag</pub><pmid>17186249</pmid><doi>10.1007/s00359-006-0201-y</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0340-7594
ispartof Journal of Comparative Physiology, 2007-04, Vol.193 (4), p.445-459
issn 0340-7594
1432-1351
language eng
recordid cdi_proquest_miscellaneous_70327320
source MEDLINE; Springer Online Journals
subjects Animals
Arachnida - physiology
Arachnida - ultrastructure
Computer Simulation
Extremities - innervation
Extremities - physiology
Finite Element Analysis
Mechanoreceptors - physiology
Mechanoreceptors - ultrastructure
Mechanotransduction, Cellular - physiology
Neurons, Afferent - physiology
Neurons, Afferent - ultrastructure
Spiders - physiology
Spiders - ultrastructure
Stress, Mechanical
Weight-Bearing - physiology
title Finite element modeling of arachnid slit sensilla--I. The mechanical significance of different slit arrays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T14%3A43%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20element%20modeling%20of%20arachnid%20slit%20sensilla--I.%20The%20mechanical%20significance%20of%20different%20slit%20arrays&rft.jtitle=Journal%20of%20Comparative%20Physiology&rft.au=H%C3%B6%C3%9Fl,%20Bernhard&rft.date=2007-04-01&rft.volume=193&rft.issue=4&rft.spage=445&rft.epage=459&rft.pages=445-459&rft.issn=0340-7594&rft.eissn=1432-1351&rft_id=info:doi/10.1007/s00359-006-0201-y&rft_dat=%3Cproquest_cross%3E70327320%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=613687338&rft_id=info:pmid/17186249&rfr_iscdi=true