Selecting the optimum number of partial least squares components for the calibration of attenuated total reflectance-mid-infrared spectra of undesigned kerosene samples
Selecting the correct dimensionality is critical for obtaining partial least squares (PLS) regression models with good predictive ability. Although calibration and validation sets are best established using experimental designs, industrial laboratories cannot afford such an approach. Typically, samp...
Gespeichert in:
Veröffentlicht in: | Analytica chimica acta 2007-03, Vol.585 (2), p.253-265 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 265 |
---|---|
container_issue | 2 |
container_start_page | 253 |
container_title | Analytica chimica acta |
container_volume | 585 |
creator | Gómez-Carracedo, M.P. Andrade, J.M. Rutledge, D.N. Faber, N.M. |
description | Selecting the correct dimensionality is critical for obtaining partial least squares (PLS) regression models with good predictive ability. Although calibration and validation sets are best established using experimental designs, industrial laboratories cannot afford such an approach. Typically, samples are collected in an (formally) undesigned way, spread over time and their measurements are included in routine measurement processes. This makes it hard to evaluate PLS model dimensionality. In this paper, classical criteria (leave-one-out cross-validation and adjusted Wold's criterion) are compared to recently proposed alternatives (smoothed PLS–PoLiSh and a randomization test) to seek out the optimum dimensionality of PLS models. Kerosene (jet fuel) samples were measured by attenuated total reflectance-mid-IR spectrometry and their spectra where used to predict eight important properties determined using reference methods that are time-consuming and prone to analytical errors. The alternative methods were shown to give reliable dimensionality predictions when compared to external validation. By contrast, the simpler methods seemed to be largely affected by the largest changes in the modeling capabilities of the first components. |
doi_str_mv | 10.1016/j.aca.2006.12.036 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70313229</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003267006024603</els_id><sourcerecordid>70313229</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-4fc59ecd363aae70be0eb7e2453aae366885627bed1a57e6d4b9486bd3963f483</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhS0EotPCA7BB3sAug__GScQKVUCRKrEA1taNfVM8JHZqO0i8EY-Jw4zUHaysa33n2PccQl5wtueM6zfHPVjYC8b0nos9k_oR2fGulY2SQj0mO8aYbIRu2QW5zPlYR8GZekoueCs7rVu5I7-_4IS2-HBHy3ekcSl-Xmca1nnARONIF0jFw0QnhFxovl8hYaY2zksMGEqmY0x_pRYmPyQoPoZNB6VgWKGgoyWWapBw3F6CYLGZvWt8GFP1cjQv9TrBJlqDw-zvQr39gSlmDEgzzMuE-Rl5MsKU8fn5vCLfPrz_en3T3H7--On63W1jFRelUaM99Gid1BIAWzYgw6FFoQ7bLLXuuoMW7YCOw6FF7dTQq04PTvZajqqTV-T1yXdJ8X7FXMzss8VpgoBxzaZlkksh-v-Cou-F4kpUkJ9AWzfKNQazJD9D-mU4M1uP5mhqj2br0XBhao9V8_Jsvg4zugfFubgKvDoDkGvyNcpgfX7gOtVXalvn7YnDmtlPj8lk67F24HyqsRsX_T--8Qc1fb9p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>29924142</pqid></control><display><type>article</type><title>Selecting the optimum number of partial least squares components for the calibration of attenuated total reflectance-mid-infrared spectra of undesigned kerosene samples</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Gómez-Carracedo, M.P. ; Andrade, J.M. ; Rutledge, D.N. ; Faber, N.M.</creator><creatorcontrib>Gómez-Carracedo, M.P. ; Andrade, J.M. ; Rutledge, D.N. ; Faber, N.M.</creatorcontrib><description>Selecting the correct dimensionality is critical for obtaining partial least squares (PLS) regression models with good predictive ability. Although calibration and validation sets are best established using experimental designs, industrial laboratories cannot afford such an approach. Typically, samples are collected in an (formally) undesigned way, spread over time and their measurements are included in routine measurement processes. This makes it hard to evaluate PLS model dimensionality. In this paper, classical criteria (leave-one-out cross-validation and adjusted Wold's criterion) are compared to recently proposed alternatives (smoothed PLS–PoLiSh and a randomization test) to seek out the optimum dimensionality of PLS models. Kerosene (jet fuel) samples were measured by attenuated total reflectance-mid-IR spectrometry and their spectra where used to predict eight important properties determined using reference methods that are time-consuming and prone to analytical errors. The alternative methods were shown to give reliable dimensionality predictions when compared to external validation. By contrast, the simpler methods seemed to be largely affected by the largest changes in the modeling capabilities of the first components.</description><identifier>ISSN: 0003-2670</identifier><identifier>EISSN: 1873-4324</identifier><identifier>DOI: 10.1016/j.aca.2006.12.036</identifier><identifier>PMID: 17386673</identifier><identifier>CODEN: ACACAM</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Analytical chemistry ; Calibration ; Chemistry ; Chemistry Techniques, Analytical - methods ; Cross-validation ; Data Interpretation, Statistical ; Exact sciences and technology ; Infrared spectrometry ; Kerosene ; Kerosene - analysis ; Least-Squares Analysis ; Partial least squares dimensionality ; Random Allocation ; Randomization test ; Regression Analysis ; Reproducibility of Results ; Smoothed partial least squares ; Software ; Spectrometric and optical methods ; Spectrophotometry, Infrared - methods ; Spectroscopy, Fourier Transform Infrared - methods</subject><ispartof>Analytica chimica acta, 2007-03, Vol.585 (2), p.253-265</ispartof><rights>2006 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-4fc59ecd363aae70be0eb7e2453aae366885627bed1a57e6d4b9486bd3963f483</citedby><cites>FETCH-LOGICAL-c412t-4fc59ecd363aae70be0eb7e2453aae366885627bed1a57e6d4b9486bd3963f483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.aca.2006.12.036$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18497338$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17386673$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gómez-Carracedo, M.P.</creatorcontrib><creatorcontrib>Andrade, J.M.</creatorcontrib><creatorcontrib>Rutledge, D.N.</creatorcontrib><creatorcontrib>Faber, N.M.</creatorcontrib><title>Selecting the optimum number of partial least squares components for the calibration of attenuated total reflectance-mid-infrared spectra of undesigned kerosene samples</title><title>Analytica chimica acta</title><addtitle>Anal Chim Acta</addtitle><description>Selecting the correct dimensionality is critical for obtaining partial least squares (PLS) regression models with good predictive ability. Although calibration and validation sets are best established using experimental designs, industrial laboratories cannot afford such an approach. Typically, samples are collected in an (formally) undesigned way, spread over time and their measurements are included in routine measurement processes. This makes it hard to evaluate PLS model dimensionality. In this paper, classical criteria (leave-one-out cross-validation and adjusted Wold's criterion) are compared to recently proposed alternatives (smoothed PLS–PoLiSh and a randomization test) to seek out the optimum dimensionality of PLS models. Kerosene (jet fuel) samples were measured by attenuated total reflectance-mid-IR spectrometry and their spectra where used to predict eight important properties determined using reference methods that are time-consuming and prone to analytical errors. The alternative methods were shown to give reliable dimensionality predictions when compared to external validation. By contrast, the simpler methods seemed to be largely affected by the largest changes in the modeling capabilities of the first components.</description><subject>Analytical chemistry</subject><subject>Calibration</subject><subject>Chemistry</subject><subject>Chemistry Techniques, Analytical - methods</subject><subject>Cross-validation</subject><subject>Data Interpretation, Statistical</subject><subject>Exact sciences and technology</subject><subject>Infrared spectrometry</subject><subject>Kerosene</subject><subject>Kerosene - analysis</subject><subject>Least-Squares Analysis</subject><subject>Partial least squares dimensionality</subject><subject>Random Allocation</subject><subject>Randomization test</subject><subject>Regression Analysis</subject><subject>Reproducibility of Results</subject><subject>Smoothed partial least squares</subject><subject>Software</subject><subject>Spectrometric and optical methods</subject><subject>Spectrophotometry, Infrared - methods</subject><subject>Spectroscopy, Fourier Transform Infrared - methods</subject><issn>0003-2670</issn><issn>1873-4324</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1u1DAUhS0EotPCA7BB3sAug__GScQKVUCRKrEA1taNfVM8JHZqO0i8EY-Jw4zUHaysa33n2PccQl5wtueM6zfHPVjYC8b0nos9k_oR2fGulY2SQj0mO8aYbIRu2QW5zPlYR8GZekoueCs7rVu5I7-_4IS2-HBHy3ekcSl-Xmca1nnARONIF0jFw0QnhFxovl8hYaY2zksMGEqmY0x_pRYmPyQoPoZNB6VgWKGgoyWWapBw3F6CYLGZvWt8GFP1cjQv9TrBJlqDw-zvQr39gSlmDEgzzMuE-Rl5MsKU8fn5vCLfPrz_en3T3H7--On63W1jFRelUaM99Gid1BIAWzYgw6FFoQ7bLLXuuoMW7YCOw6FF7dTQq04PTvZajqqTV-T1yXdJ8X7FXMzss8VpgoBxzaZlkksh-v-Cou-F4kpUkJ9AWzfKNQazJD9D-mU4M1uP5mhqj2br0XBhao9V8_Jsvg4zugfFubgKvDoDkGvyNcpgfX7gOtVXalvn7YnDmtlPj8lk67F24HyqsRsX_T--8Qc1fb9p</recordid><startdate>20070307</startdate><enddate>20070307</enddate><creator>Gómez-Carracedo, M.P.</creator><creator>Andrade, J.M.</creator><creator>Rutledge, D.N.</creator><creator>Faber, N.M.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20070307</creationdate><title>Selecting the optimum number of partial least squares components for the calibration of attenuated total reflectance-mid-infrared spectra of undesigned kerosene samples</title><author>Gómez-Carracedo, M.P. ; Andrade, J.M. ; Rutledge, D.N. ; Faber, N.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-4fc59ecd363aae70be0eb7e2453aae366885627bed1a57e6d4b9486bd3963f483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Analytical chemistry</topic><topic>Calibration</topic><topic>Chemistry</topic><topic>Chemistry Techniques, Analytical - methods</topic><topic>Cross-validation</topic><topic>Data Interpretation, Statistical</topic><topic>Exact sciences and technology</topic><topic>Infrared spectrometry</topic><topic>Kerosene</topic><topic>Kerosene - analysis</topic><topic>Least-Squares Analysis</topic><topic>Partial least squares dimensionality</topic><topic>Random Allocation</topic><topic>Randomization test</topic><topic>Regression Analysis</topic><topic>Reproducibility of Results</topic><topic>Smoothed partial least squares</topic><topic>Software</topic><topic>Spectrometric and optical methods</topic><topic>Spectrophotometry, Infrared - methods</topic><topic>Spectroscopy, Fourier Transform Infrared - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gómez-Carracedo, M.P.</creatorcontrib><creatorcontrib>Andrade, J.M.</creatorcontrib><creatorcontrib>Rutledge, D.N.</creatorcontrib><creatorcontrib>Faber, N.M.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Analytica chimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gómez-Carracedo, M.P.</au><au>Andrade, J.M.</au><au>Rutledge, D.N.</au><au>Faber, N.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selecting the optimum number of partial least squares components for the calibration of attenuated total reflectance-mid-infrared spectra of undesigned kerosene samples</atitle><jtitle>Analytica chimica acta</jtitle><addtitle>Anal Chim Acta</addtitle><date>2007-03-07</date><risdate>2007</risdate><volume>585</volume><issue>2</issue><spage>253</spage><epage>265</epage><pages>253-265</pages><issn>0003-2670</issn><eissn>1873-4324</eissn><coden>ACACAM</coden><abstract>Selecting the correct dimensionality is critical for obtaining partial least squares (PLS) regression models with good predictive ability. Although calibration and validation sets are best established using experimental designs, industrial laboratories cannot afford such an approach. Typically, samples are collected in an (formally) undesigned way, spread over time and their measurements are included in routine measurement processes. This makes it hard to evaluate PLS model dimensionality. In this paper, classical criteria (leave-one-out cross-validation and adjusted Wold's criterion) are compared to recently proposed alternatives (smoothed PLS–PoLiSh and a randomization test) to seek out the optimum dimensionality of PLS models. Kerosene (jet fuel) samples were measured by attenuated total reflectance-mid-IR spectrometry and their spectra where used to predict eight important properties determined using reference methods that are time-consuming and prone to analytical errors. The alternative methods were shown to give reliable dimensionality predictions when compared to external validation. By contrast, the simpler methods seemed to be largely affected by the largest changes in the modeling capabilities of the first components.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>17386673</pmid><doi>10.1016/j.aca.2006.12.036</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2670 |
ispartof | Analytica chimica acta, 2007-03, Vol.585 (2), p.253-265 |
issn | 0003-2670 1873-4324 |
language | eng |
recordid | cdi_proquest_miscellaneous_70313229 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Analytical chemistry Calibration Chemistry Chemistry Techniques, Analytical - methods Cross-validation Data Interpretation, Statistical Exact sciences and technology Infrared spectrometry Kerosene Kerosene - analysis Least-Squares Analysis Partial least squares dimensionality Random Allocation Randomization test Regression Analysis Reproducibility of Results Smoothed partial least squares Software Spectrometric and optical methods Spectrophotometry, Infrared - methods Spectroscopy, Fourier Transform Infrared - methods |
title | Selecting the optimum number of partial least squares components for the calibration of attenuated total reflectance-mid-infrared spectra of undesigned kerosene samples |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T10%3A22%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selecting%20the%20optimum%20number%20of%20partial%20least%20squares%20components%20for%20the%20calibration%20of%20attenuated%20total%20reflectance-mid-infrared%20spectra%20of%20undesigned%20kerosene%20samples&rft.jtitle=Analytica%20chimica%20acta&rft.au=G%C3%B3mez-Carracedo,%20M.P.&rft.date=2007-03-07&rft.volume=585&rft.issue=2&rft.spage=253&rft.epage=265&rft.pages=253-265&rft.issn=0003-2670&rft.eissn=1873-4324&rft.coden=ACACAM&rft_id=info:doi/10.1016/j.aca.2006.12.036&rft_dat=%3Cproquest_cross%3E70313229%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=29924142&rft_id=info:pmid/17386673&rft_els_id=S0003267006024603&rfr_iscdi=true |