Kinetic Folding of Haloferax volcanii and Escherichia coli Dihydrofolate Reductases: Haloadaptation by Unfolded State Destabilization at High Ionic Strength
Salts affect protein stability by multiple mechanisms (e.g., the Hofmeister effect, preferential hydration, electrostatic effects and weak ion binding). These mechanisms can affect the stability of both the native state and the unfolded state. Previous equilibrium stability studies demonstrated that...
Gespeichert in:
Veröffentlicht in: | Journal of molecular biology 2008-03, Vol.376 (5), p.1451-1462 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1462 |
---|---|
container_issue | 5 |
container_start_page | 1451 |
container_title | Journal of molecular biology |
container_volume | 376 |
creator | Gloss, Lisa M. Topping, Traci B. Binder, April K. Lohman, Jeremy R. |
description | Salts affect protein stability by multiple mechanisms (e.g., the Hofmeister effect, preferential hydration, electrostatic effects and weak ion binding). These mechanisms can affect the stability of both the native state and the unfolded state. Previous equilibrium stability studies demonstrated that KCl stabilizes dihydrofolate reductases (DHFRs) from
Escherichia coli (ecDHFR,
E. coli DHFR) and
Haloferax volcanii (hvDHFR1,
H. volcanii DHFR encoded by the
hdrA gene) with similar efficacies, despite adaptation to disparate physiological ionic strengths (0.2 M
versus 2 M). Kinetic studies can provide insights on whether equilibrium effects reflect native state stabilization or unfolded state destabilization. Similar kinetic mechanisms describe the folding of urea-denatured ecDHFR and hvDHFR1: a 5-ms stopped-flow burst-phase species that folds to the native state through two sequential intermediates with relaxation times of 0.1–3 s and 25–100 s. The latter kinetic step is very similar to that observed for the refolding of hvDHFR1 from low ionic strength. The unfolding of hvDHFR1 at low ionic strength is relatively slow, suggesting kinetic stabilization as observed for some thermophilic enzymes. Increased KCl concentrations slow the urea-induced unfolding of ecDHFR and hvDHFR1, but much less than expected from equilibrium studies. Unfolding rates extrapolated to 0 M denaturant,
k
unf(H
2O), are relatively independent of ionic strength, demonstrating that the KCl-induced stabilization of ecDHFR and hvDHFR1 results predominantly from destabilization of the unfolded state. This supports the hypothesis from previous equilibrium studies that haloadaptation harnesses the effects of elevated salt concentrations on the properties of the aqueous solvent to enhance protein stability. |
doi_str_mv | 10.1016/j.jmb.2007.12.056 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70306682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022283607016841</els_id><sourcerecordid>20884652</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-c6320b3a12ad65c716ada15e0dc5a26c93b6478ce5550556d37ddde97fad3f263</originalsourceid><addsrcrecordid>eNqFkctuEzEUhi0EoqHwAGyQV-xm8CX2OLBCvaWiEhKla8tjn8k4mtjBdirCs_CwOE0kdrA6m-_85_Ih9JaSlhIqP6zb9aZvGSFdS1lLhHyGZpSoRaMkV8_RjBDGGqa4PEOvcl4TQgSfq5fojCpGOirZDP3-4gMUb_F1nJwPKxwHvDRTHCCZn_gxTtYE77EJDl9lO0LydvQG2zh5fOnHvUtxiJMpgL-B29liMuSPTwnGmW0xxceA-z1-CBVz4PB9OcCXkIvp_eR_HQlT8NKvRnwbQ93lviQIqzK-Ri8GM2V4c6rn6OH66vvFsrn7enN78fmusVzy0ljJGem5ocw4KWw9rM6mAoizwjBpF7yX805ZEEIQIaTjnXMOFt1gHB-Y5Ofo_TF3m-KPXV1Nb3y2ME0mQNxl3RFOpFTsvyAjSs2lOID0CNoUc04w6G3yG5P2mhJ9cKfXurrTB3eaMl3d1Z53p_BdvwH3t-MkqwKfjgDUXzx6SDpbD8GC8wls0S76f8T_AWTIrLM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20884652</pqid></control><display><type>article</type><title>Kinetic Folding of Haloferax volcanii and Escherichia coli Dihydrofolate Reductases: Haloadaptation by Unfolded State Destabilization at High Ionic Strength</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Gloss, Lisa M. ; Topping, Traci B. ; Binder, April K. ; Lohman, Jeremy R.</creator><creatorcontrib>Gloss, Lisa M. ; Topping, Traci B. ; Binder, April K. ; Lohman, Jeremy R.</creatorcontrib><description>Salts affect protein stability by multiple mechanisms (e.g., the Hofmeister effect, preferential hydration, electrostatic effects and weak ion binding). These mechanisms can affect the stability of both the native state and the unfolded state. Previous equilibrium stability studies demonstrated that KCl stabilizes dihydrofolate reductases (DHFRs) from
Escherichia coli (ecDHFR,
E. coli DHFR) and
Haloferax volcanii (hvDHFR1,
H. volcanii DHFR encoded by the
hdrA gene) with similar efficacies, despite adaptation to disparate physiological ionic strengths (0.2 M
versus 2 M). Kinetic studies can provide insights on whether equilibrium effects reflect native state stabilization or unfolded state destabilization. Similar kinetic mechanisms describe the folding of urea-denatured ecDHFR and hvDHFR1: a 5-ms stopped-flow burst-phase species that folds to the native state through two sequential intermediates with relaxation times of 0.1–3 s and 25–100 s. The latter kinetic step is very similar to that observed for the refolding of hvDHFR1 from low ionic strength. The unfolding of hvDHFR1 at low ionic strength is relatively slow, suggesting kinetic stabilization as observed for some thermophilic enzymes. Increased KCl concentrations slow the urea-induced unfolding of ecDHFR and hvDHFR1, but much less than expected from equilibrium studies. Unfolding rates extrapolated to 0 M denaturant,
k
unf(H
2O), are relatively independent of ionic strength, demonstrating that the KCl-induced stabilization of ecDHFR and hvDHFR1 results predominantly from destabilization of the unfolded state. This supports the hypothesis from previous equilibrium studies that haloadaptation harnesses the effects of elevated salt concentrations on the properties of the aqueous solvent to enhance protein stability.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1016/j.jmb.2007.12.056</identifier><identifier>PMID: 18207162</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Bacterial Proteins - chemistry ; Escherichia coli ; Escherichia coli - enzymology ; Escherichia coli Proteins - chemistry ; fluorescence ; Haloferax volcanii ; Haloferax volcanii - enzymology ; halophilic enzymes ; Kinetics ; Potassium Chloride - metabolism ; Protein Folding ; Tetrahydrofolate Dehydrogenase - chemistry ; Tetrahydrofolate Dehydrogenase - metabolism ; Urea - pharmacology</subject><ispartof>Journal of molecular biology, 2008-03, Vol.376 (5), p.1451-1462</ispartof><rights>2007 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-c6320b3a12ad65c716ada15e0dc5a26c93b6478ce5550556d37ddde97fad3f263</citedby><cites>FETCH-LOGICAL-c363t-c6320b3a12ad65c716ada15e0dc5a26c93b6478ce5550556d37ddde97fad3f263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmb.2007.12.056$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18207162$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gloss, Lisa M.</creatorcontrib><creatorcontrib>Topping, Traci B.</creatorcontrib><creatorcontrib>Binder, April K.</creatorcontrib><creatorcontrib>Lohman, Jeremy R.</creatorcontrib><title>Kinetic Folding of Haloferax volcanii and Escherichia coli Dihydrofolate Reductases: Haloadaptation by Unfolded State Destabilization at High Ionic Strength</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>Salts affect protein stability by multiple mechanisms (e.g., the Hofmeister effect, preferential hydration, electrostatic effects and weak ion binding). These mechanisms can affect the stability of both the native state and the unfolded state. Previous equilibrium stability studies demonstrated that KCl stabilizes dihydrofolate reductases (DHFRs) from
Escherichia coli (ecDHFR,
E. coli DHFR) and
Haloferax volcanii (hvDHFR1,
H. volcanii DHFR encoded by the
hdrA gene) with similar efficacies, despite adaptation to disparate physiological ionic strengths (0.2 M
versus 2 M). Kinetic studies can provide insights on whether equilibrium effects reflect native state stabilization or unfolded state destabilization. Similar kinetic mechanisms describe the folding of urea-denatured ecDHFR and hvDHFR1: a 5-ms stopped-flow burst-phase species that folds to the native state through two sequential intermediates with relaxation times of 0.1–3 s and 25–100 s. The latter kinetic step is very similar to that observed for the refolding of hvDHFR1 from low ionic strength. The unfolding of hvDHFR1 at low ionic strength is relatively slow, suggesting kinetic stabilization as observed for some thermophilic enzymes. Increased KCl concentrations slow the urea-induced unfolding of ecDHFR and hvDHFR1, but much less than expected from equilibrium studies. Unfolding rates extrapolated to 0 M denaturant,
k
unf(H
2O), are relatively independent of ionic strength, demonstrating that the KCl-induced stabilization of ecDHFR and hvDHFR1 results predominantly from destabilization of the unfolded state. This supports the hypothesis from previous equilibrium studies that haloadaptation harnesses the effects of elevated salt concentrations on the properties of the aqueous solvent to enhance protein stability.</description><subject>Bacterial Proteins - chemistry</subject><subject>Escherichia coli</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>fluorescence</subject><subject>Haloferax volcanii</subject><subject>Haloferax volcanii - enzymology</subject><subject>halophilic enzymes</subject><subject>Kinetics</subject><subject>Potassium Chloride - metabolism</subject><subject>Protein Folding</subject><subject>Tetrahydrofolate Dehydrogenase - chemistry</subject><subject>Tetrahydrofolate Dehydrogenase - metabolism</subject><subject>Urea - pharmacology</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctuEzEUhi0EoqHwAGyQV-xm8CX2OLBCvaWiEhKla8tjn8k4mtjBdirCs_CwOE0kdrA6m-_85_Ih9JaSlhIqP6zb9aZvGSFdS1lLhHyGZpSoRaMkV8_RjBDGGqa4PEOvcl4TQgSfq5fojCpGOirZDP3-4gMUb_F1nJwPKxwHvDRTHCCZn_gxTtYE77EJDl9lO0LydvQG2zh5fOnHvUtxiJMpgL-B29liMuSPTwnGmW0xxceA-z1-CBVz4PB9OcCXkIvp_eR_HQlT8NKvRnwbQ93lviQIqzK-Ri8GM2V4c6rn6OH66vvFsrn7enN78fmusVzy0ljJGem5ocw4KWw9rM6mAoizwjBpF7yX805ZEEIQIaTjnXMOFt1gHB-Y5Ofo_TF3m-KPXV1Nb3y2ME0mQNxl3RFOpFTsvyAjSs2lOID0CNoUc04w6G3yG5P2mhJ9cKfXurrTB3eaMl3d1Z53p_BdvwH3t-MkqwKfjgDUXzx6SDpbD8GC8wls0S76f8T_AWTIrLM</recordid><startdate>20080307</startdate><enddate>20080307</enddate><creator>Gloss, Lisa M.</creator><creator>Topping, Traci B.</creator><creator>Binder, April K.</creator><creator>Lohman, Jeremy R.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>20080307</creationdate><title>Kinetic Folding of Haloferax volcanii and Escherichia coli Dihydrofolate Reductases: Haloadaptation by Unfolded State Destabilization at High Ionic Strength</title><author>Gloss, Lisa M. ; Topping, Traci B. ; Binder, April K. ; Lohman, Jeremy R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-c6320b3a12ad65c716ada15e0dc5a26c93b6478ce5550556d37ddde97fad3f263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Bacterial Proteins - chemistry</topic><topic>Escherichia coli</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>fluorescence</topic><topic>Haloferax volcanii</topic><topic>Haloferax volcanii - enzymology</topic><topic>halophilic enzymes</topic><topic>Kinetics</topic><topic>Potassium Chloride - metabolism</topic><topic>Protein Folding</topic><topic>Tetrahydrofolate Dehydrogenase - chemistry</topic><topic>Tetrahydrofolate Dehydrogenase - metabolism</topic><topic>Urea - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gloss, Lisa M.</creatorcontrib><creatorcontrib>Topping, Traci B.</creatorcontrib><creatorcontrib>Binder, April K.</creatorcontrib><creatorcontrib>Lohman, Jeremy R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gloss, Lisa M.</au><au>Topping, Traci B.</au><au>Binder, April K.</au><au>Lohman, Jeremy R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic Folding of Haloferax volcanii and Escherichia coli Dihydrofolate Reductases: Haloadaptation by Unfolded State Destabilization at High Ionic Strength</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>2008-03-07</date><risdate>2008</risdate><volume>376</volume><issue>5</issue><spage>1451</spage><epage>1462</epage><pages>1451-1462</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><abstract>Salts affect protein stability by multiple mechanisms (e.g., the Hofmeister effect, preferential hydration, electrostatic effects and weak ion binding). These mechanisms can affect the stability of both the native state and the unfolded state. Previous equilibrium stability studies demonstrated that KCl stabilizes dihydrofolate reductases (DHFRs) from
Escherichia coli (ecDHFR,
E. coli DHFR) and
Haloferax volcanii (hvDHFR1,
H. volcanii DHFR encoded by the
hdrA gene) with similar efficacies, despite adaptation to disparate physiological ionic strengths (0.2 M
versus 2 M). Kinetic studies can provide insights on whether equilibrium effects reflect native state stabilization or unfolded state destabilization. Similar kinetic mechanisms describe the folding of urea-denatured ecDHFR and hvDHFR1: a 5-ms stopped-flow burst-phase species that folds to the native state through two sequential intermediates with relaxation times of 0.1–3 s and 25–100 s. The latter kinetic step is very similar to that observed for the refolding of hvDHFR1 from low ionic strength. The unfolding of hvDHFR1 at low ionic strength is relatively slow, suggesting kinetic stabilization as observed for some thermophilic enzymes. Increased KCl concentrations slow the urea-induced unfolding of ecDHFR and hvDHFR1, but much less than expected from equilibrium studies. Unfolding rates extrapolated to 0 M denaturant,
k
unf(H
2O), are relatively independent of ionic strength, demonstrating that the KCl-induced stabilization of ecDHFR and hvDHFR1 results predominantly from destabilization of the unfolded state. This supports the hypothesis from previous equilibrium studies that haloadaptation harnesses the effects of elevated salt concentrations on the properties of the aqueous solvent to enhance protein stability.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>18207162</pmid><doi>10.1016/j.jmb.2007.12.056</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2836 |
ispartof | Journal of molecular biology, 2008-03, Vol.376 (5), p.1451-1462 |
issn | 0022-2836 1089-8638 |
language | eng |
recordid | cdi_proquest_miscellaneous_70306682 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Bacterial Proteins - chemistry Escherichia coli Escherichia coli - enzymology Escherichia coli Proteins - chemistry fluorescence Haloferax volcanii Haloferax volcanii - enzymology halophilic enzymes Kinetics Potassium Chloride - metabolism Protein Folding Tetrahydrofolate Dehydrogenase - chemistry Tetrahydrofolate Dehydrogenase - metabolism Urea - pharmacology |
title | Kinetic Folding of Haloferax volcanii and Escherichia coli Dihydrofolate Reductases: Haloadaptation by Unfolded State Destabilization at High Ionic Strength |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A01%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20Folding%20of%20Haloferax%20volcanii%20and%20Escherichia%20coli%20Dihydrofolate%20Reductases:%20Haloadaptation%20by%20Unfolded%20State%20Destabilization%20at%20High%20Ionic%20Strength&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Gloss,%20Lisa%20M.&rft.date=2008-03-07&rft.volume=376&rft.issue=5&rft.spage=1451&rft.epage=1462&rft.pages=1451-1462&rft.issn=0022-2836&rft.eissn=1089-8638&rft_id=info:doi/10.1016/j.jmb.2007.12.056&rft_dat=%3Cproquest_cross%3E20884652%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20884652&rft_id=info:pmid/18207162&rft_els_id=S0022283607016841&rfr_iscdi=true |