Kinetic Folding of Haloferax volcanii and Escherichia coli Dihydrofolate Reductases: Haloadaptation by Unfolded State Destabilization at High Ionic Strength

Salts affect protein stability by multiple mechanisms (e.g., the Hofmeister effect, preferential hydration, electrostatic effects and weak ion binding). These mechanisms can affect the stability of both the native state and the unfolded state. Previous equilibrium stability studies demonstrated that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of molecular biology 2008-03, Vol.376 (5), p.1451-1462
Hauptverfasser: Gloss, Lisa M., Topping, Traci B., Binder, April K., Lohman, Jeremy R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1462
container_issue 5
container_start_page 1451
container_title Journal of molecular biology
container_volume 376
creator Gloss, Lisa M.
Topping, Traci B.
Binder, April K.
Lohman, Jeremy R.
description Salts affect protein stability by multiple mechanisms (e.g., the Hofmeister effect, preferential hydration, electrostatic effects and weak ion binding). These mechanisms can affect the stability of both the native state and the unfolded state. Previous equilibrium stability studies demonstrated that KCl stabilizes dihydrofolate reductases (DHFRs) from Escherichia coli (ecDHFR, E. coli DHFR) and Haloferax volcanii (hvDHFR1, H. volcanii DHFR encoded by the hdrA gene) with similar efficacies, despite adaptation to disparate physiological ionic strengths (0.2 M versus 2 M). Kinetic studies can provide insights on whether equilibrium effects reflect native state stabilization or unfolded state destabilization. Similar kinetic mechanisms describe the folding of urea-denatured ecDHFR and hvDHFR1: a 5-ms stopped-flow burst-phase species that folds to the native state through two sequential intermediates with relaxation times of 0.1–3 s and 25–100 s. The latter kinetic step is very similar to that observed for the refolding of hvDHFR1 from low ionic strength. The unfolding of hvDHFR1 at low ionic strength is relatively slow, suggesting kinetic stabilization as observed for some thermophilic enzymes. Increased KCl concentrations slow the urea-induced unfolding of ecDHFR and hvDHFR1, but much less than expected from equilibrium studies. Unfolding rates extrapolated to 0 M denaturant, k unf(H 2O), are relatively independent of ionic strength, demonstrating that the KCl-induced stabilization of ecDHFR and hvDHFR1 results predominantly from destabilization of the unfolded state. This supports the hypothesis from previous equilibrium studies that haloadaptation harnesses the effects of elevated salt concentrations on the properties of the aqueous solvent to enhance protein stability.
doi_str_mv 10.1016/j.jmb.2007.12.056
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70306682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022283607016841</els_id><sourcerecordid>20884652</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-c6320b3a12ad65c716ada15e0dc5a26c93b6478ce5550556d37ddde97fad3f263</originalsourceid><addsrcrecordid>eNqFkctuEzEUhi0EoqHwAGyQV-xm8CX2OLBCvaWiEhKla8tjn8k4mtjBdirCs_CwOE0kdrA6m-_85_Ih9JaSlhIqP6zb9aZvGSFdS1lLhHyGZpSoRaMkV8_RjBDGGqa4PEOvcl4TQgSfq5fojCpGOirZDP3-4gMUb_F1nJwPKxwHvDRTHCCZn_gxTtYE77EJDl9lO0LydvQG2zh5fOnHvUtxiJMpgL-B29liMuSPTwnGmW0xxceA-z1-CBVz4PB9OcCXkIvp_eR_HQlT8NKvRnwbQ93lviQIqzK-Ri8GM2V4c6rn6OH66vvFsrn7enN78fmusVzy0ljJGem5ocw4KWw9rM6mAoizwjBpF7yX805ZEEIQIaTjnXMOFt1gHB-Y5Ofo_TF3m-KPXV1Nb3y2ME0mQNxl3RFOpFTsvyAjSs2lOID0CNoUc04w6G3yG5P2mhJ9cKfXurrTB3eaMl3d1Z53p_BdvwH3t-MkqwKfjgDUXzx6SDpbD8GC8wls0S76f8T_AWTIrLM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20884652</pqid></control><display><type>article</type><title>Kinetic Folding of Haloferax volcanii and Escherichia coli Dihydrofolate Reductases: Haloadaptation by Unfolded State Destabilization at High Ionic Strength</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Gloss, Lisa M. ; Topping, Traci B. ; Binder, April K. ; Lohman, Jeremy R.</creator><creatorcontrib>Gloss, Lisa M. ; Topping, Traci B. ; Binder, April K. ; Lohman, Jeremy R.</creatorcontrib><description>Salts affect protein stability by multiple mechanisms (e.g., the Hofmeister effect, preferential hydration, electrostatic effects and weak ion binding). These mechanisms can affect the stability of both the native state and the unfolded state. Previous equilibrium stability studies demonstrated that KCl stabilizes dihydrofolate reductases (DHFRs) from Escherichia coli (ecDHFR, E. coli DHFR) and Haloferax volcanii (hvDHFR1, H. volcanii DHFR encoded by the hdrA gene) with similar efficacies, despite adaptation to disparate physiological ionic strengths (0.2 M versus 2 M). Kinetic studies can provide insights on whether equilibrium effects reflect native state stabilization or unfolded state destabilization. Similar kinetic mechanisms describe the folding of urea-denatured ecDHFR and hvDHFR1: a 5-ms stopped-flow burst-phase species that folds to the native state through two sequential intermediates with relaxation times of 0.1–3 s and 25–100 s. The latter kinetic step is very similar to that observed for the refolding of hvDHFR1 from low ionic strength. The unfolding of hvDHFR1 at low ionic strength is relatively slow, suggesting kinetic stabilization as observed for some thermophilic enzymes. Increased KCl concentrations slow the urea-induced unfolding of ecDHFR and hvDHFR1, but much less than expected from equilibrium studies. Unfolding rates extrapolated to 0 M denaturant, k unf(H 2O), are relatively independent of ionic strength, demonstrating that the KCl-induced stabilization of ecDHFR and hvDHFR1 results predominantly from destabilization of the unfolded state. This supports the hypothesis from previous equilibrium studies that haloadaptation harnesses the effects of elevated salt concentrations on the properties of the aqueous solvent to enhance protein stability.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1016/j.jmb.2007.12.056</identifier><identifier>PMID: 18207162</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Bacterial Proteins - chemistry ; Escherichia coli ; Escherichia coli - enzymology ; Escherichia coli Proteins - chemistry ; fluorescence ; Haloferax volcanii ; Haloferax volcanii - enzymology ; halophilic enzymes ; Kinetics ; Potassium Chloride - metabolism ; Protein Folding ; Tetrahydrofolate Dehydrogenase - chemistry ; Tetrahydrofolate Dehydrogenase - metabolism ; Urea - pharmacology</subject><ispartof>Journal of molecular biology, 2008-03, Vol.376 (5), p.1451-1462</ispartof><rights>2007 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-c6320b3a12ad65c716ada15e0dc5a26c93b6478ce5550556d37ddde97fad3f263</citedby><cites>FETCH-LOGICAL-c363t-c6320b3a12ad65c716ada15e0dc5a26c93b6478ce5550556d37ddde97fad3f263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jmb.2007.12.056$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18207162$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gloss, Lisa M.</creatorcontrib><creatorcontrib>Topping, Traci B.</creatorcontrib><creatorcontrib>Binder, April K.</creatorcontrib><creatorcontrib>Lohman, Jeremy R.</creatorcontrib><title>Kinetic Folding of Haloferax volcanii and Escherichia coli Dihydrofolate Reductases: Haloadaptation by Unfolded State Destabilization at High Ionic Strength</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>Salts affect protein stability by multiple mechanisms (e.g., the Hofmeister effect, preferential hydration, electrostatic effects and weak ion binding). These mechanisms can affect the stability of both the native state and the unfolded state. Previous equilibrium stability studies demonstrated that KCl stabilizes dihydrofolate reductases (DHFRs) from Escherichia coli (ecDHFR, E. coli DHFR) and Haloferax volcanii (hvDHFR1, H. volcanii DHFR encoded by the hdrA gene) with similar efficacies, despite adaptation to disparate physiological ionic strengths (0.2 M versus 2 M). Kinetic studies can provide insights on whether equilibrium effects reflect native state stabilization or unfolded state destabilization. Similar kinetic mechanisms describe the folding of urea-denatured ecDHFR and hvDHFR1: a 5-ms stopped-flow burst-phase species that folds to the native state through two sequential intermediates with relaxation times of 0.1–3 s and 25–100 s. The latter kinetic step is very similar to that observed for the refolding of hvDHFR1 from low ionic strength. The unfolding of hvDHFR1 at low ionic strength is relatively slow, suggesting kinetic stabilization as observed for some thermophilic enzymes. Increased KCl concentrations slow the urea-induced unfolding of ecDHFR and hvDHFR1, but much less than expected from equilibrium studies. Unfolding rates extrapolated to 0 M denaturant, k unf(H 2O), are relatively independent of ionic strength, demonstrating that the KCl-induced stabilization of ecDHFR and hvDHFR1 results predominantly from destabilization of the unfolded state. This supports the hypothesis from previous equilibrium studies that haloadaptation harnesses the effects of elevated salt concentrations on the properties of the aqueous solvent to enhance protein stability.</description><subject>Bacterial Proteins - chemistry</subject><subject>Escherichia coli</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>fluorescence</subject><subject>Haloferax volcanii</subject><subject>Haloferax volcanii - enzymology</subject><subject>halophilic enzymes</subject><subject>Kinetics</subject><subject>Potassium Chloride - metabolism</subject><subject>Protein Folding</subject><subject>Tetrahydrofolate Dehydrogenase - chemistry</subject><subject>Tetrahydrofolate Dehydrogenase - metabolism</subject><subject>Urea - pharmacology</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkctuEzEUhi0EoqHwAGyQV-xm8CX2OLBCvaWiEhKla8tjn8k4mtjBdirCs_CwOE0kdrA6m-_85_Ih9JaSlhIqP6zb9aZvGSFdS1lLhHyGZpSoRaMkV8_RjBDGGqa4PEOvcl4TQgSfq5fojCpGOirZDP3-4gMUb_F1nJwPKxwHvDRTHCCZn_gxTtYE77EJDl9lO0LydvQG2zh5fOnHvUtxiJMpgL-B29liMuSPTwnGmW0xxceA-z1-CBVz4PB9OcCXkIvp_eR_HQlT8NKvRnwbQ93lviQIqzK-Ri8GM2V4c6rn6OH66vvFsrn7enN78fmusVzy0ljJGem5ocw4KWw9rM6mAoizwjBpF7yX805ZEEIQIaTjnXMOFt1gHB-Y5Ofo_TF3m-KPXV1Nb3y2ME0mQNxl3RFOpFTsvyAjSs2lOID0CNoUc04w6G3yG5P2mhJ9cKfXurrTB3eaMl3d1Z53p_BdvwH3t-MkqwKfjgDUXzx6SDpbD8GC8wls0S76f8T_AWTIrLM</recordid><startdate>20080307</startdate><enddate>20080307</enddate><creator>Gloss, Lisa M.</creator><creator>Topping, Traci B.</creator><creator>Binder, April K.</creator><creator>Lohman, Jeremy R.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>20080307</creationdate><title>Kinetic Folding of Haloferax volcanii and Escherichia coli Dihydrofolate Reductases: Haloadaptation by Unfolded State Destabilization at High Ionic Strength</title><author>Gloss, Lisa M. ; Topping, Traci B. ; Binder, April K. ; Lohman, Jeremy R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-c6320b3a12ad65c716ada15e0dc5a26c93b6478ce5550556d37ddde97fad3f263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Bacterial Proteins - chemistry</topic><topic>Escherichia coli</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>fluorescence</topic><topic>Haloferax volcanii</topic><topic>Haloferax volcanii - enzymology</topic><topic>halophilic enzymes</topic><topic>Kinetics</topic><topic>Potassium Chloride - metabolism</topic><topic>Protein Folding</topic><topic>Tetrahydrofolate Dehydrogenase - chemistry</topic><topic>Tetrahydrofolate Dehydrogenase - metabolism</topic><topic>Urea - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gloss, Lisa M.</creatorcontrib><creatorcontrib>Topping, Traci B.</creatorcontrib><creatorcontrib>Binder, April K.</creatorcontrib><creatorcontrib>Lohman, Jeremy R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gloss, Lisa M.</au><au>Topping, Traci B.</au><au>Binder, April K.</au><au>Lohman, Jeremy R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic Folding of Haloferax volcanii and Escherichia coli Dihydrofolate Reductases: Haloadaptation by Unfolded State Destabilization at High Ionic Strength</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>2008-03-07</date><risdate>2008</risdate><volume>376</volume><issue>5</issue><spage>1451</spage><epage>1462</epage><pages>1451-1462</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><abstract>Salts affect protein stability by multiple mechanisms (e.g., the Hofmeister effect, preferential hydration, electrostatic effects and weak ion binding). These mechanisms can affect the stability of both the native state and the unfolded state. Previous equilibrium stability studies demonstrated that KCl stabilizes dihydrofolate reductases (DHFRs) from Escherichia coli (ecDHFR, E. coli DHFR) and Haloferax volcanii (hvDHFR1, H. volcanii DHFR encoded by the hdrA gene) with similar efficacies, despite adaptation to disparate physiological ionic strengths (0.2 M versus 2 M). Kinetic studies can provide insights on whether equilibrium effects reflect native state stabilization or unfolded state destabilization. Similar kinetic mechanisms describe the folding of urea-denatured ecDHFR and hvDHFR1: a 5-ms stopped-flow burst-phase species that folds to the native state through two sequential intermediates with relaxation times of 0.1–3 s and 25–100 s. The latter kinetic step is very similar to that observed for the refolding of hvDHFR1 from low ionic strength. The unfolding of hvDHFR1 at low ionic strength is relatively slow, suggesting kinetic stabilization as observed for some thermophilic enzymes. Increased KCl concentrations slow the urea-induced unfolding of ecDHFR and hvDHFR1, but much less than expected from equilibrium studies. Unfolding rates extrapolated to 0 M denaturant, k unf(H 2O), are relatively independent of ionic strength, demonstrating that the KCl-induced stabilization of ecDHFR and hvDHFR1 results predominantly from destabilization of the unfolded state. This supports the hypothesis from previous equilibrium studies that haloadaptation harnesses the effects of elevated salt concentrations on the properties of the aqueous solvent to enhance protein stability.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>18207162</pmid><doi>10.1016/j.jmb.2007.12.056</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2836
ispartof Journal of molecular biology, 2008-03, Vol.376 (5), p.1451-1462
issn 0022-2836
1089-8638
language eng
recordid cdi_proquest_miscellaneous_70306682
source MEDLINE; Elsevier ScienceDirect Journals
subjects Bacterial Proteins - chemistry
Escherichia coli
Escherichia coli - enzymology
Escherichia coli Proteins - chemistry
fluorescence
Haloferax volcanii
Haloferax volcanii - enzymology
halophilic enzymes
Kinetics
Potassium Chloride - metabolism
Protein Folding
Tetrahydrofolate Dehydrogenase - chemistry
Tetrahydrofolate Dehydrogenase - metabolism
Urea - pharmacology
title Kinetic Folding of Haloferax volcanii and Escherichia coli Dihydrofolate Reductases: Haloadaptation by Unfolded State Destabilization at High Ionic Strength
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T09%3A01%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20Folding%20of%20Haloferax%20volcanii%20and%20Escherichia%20coli%20Dihydrofolate%20Reductases:%20Haloadaptation%20by%20Unfolded%20State%20Destabilization%20at%20High%20Ionic%20Strength&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Gloss,%20Lisa%20M.&rft.date=2008-03-07&rft.volume=376&rft.issue=5&rft.spage=1451&rft.epage=1462&rft.pages=1451-1462&rft.issn=0022-2836&rft.eissn=1089-8638&rft_id=info:doi/10.1016/j.jmb.2007.12.056&rft_dat=%3Cproquest_cross%3E20884652%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20884652&rft_id=info:pmid/18207162&rft_els_id=S0022283607016841&rfr_iscdi=true