Dietary Supplementation Exerts Neuroprotective Effects in Ischemic Stroke Model

This study examined whether dietary supplementation can be used to protect against ischemic stroke. Two groups of adult male Sprague-Dawley rats initially received NT-020, a proprietary formulation of blueberry, green tea, Vitamin D3, and carnosine ( n = 8), or vehicle ( n = 7). Dosing for NT-020 an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rejuvenation research 2008-02, Vol.11 (1), p.21-214
Hauptverfasser: Yasuhara, Takao, Hara, Koichi, Maki, Mina, Masuda, Tadashi, Sanberg, Cyndy D., Sanberg, Paul R., Bickford, Paula C., Borlongan, Cesar V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study examined whether dietary supplementation can be used to protect against ischemic stroke. Two groups of adult male Sprague-Dawley rats initially received NT-020, a proprietary formulation of blueberry, green tea, Vitamin D3, and carnosine ( n = 8), or vehicle ( n = 7). Dosing for NT-020 and vehicle consisted of daily oral administration (using a gavage) over a 2-week period. On day 14 following the last drug treatment, all animals underwent the stroke surgery using the transient 1-hour suture occlusion of middle cerebral artery (MCAo). To reveal the functional effects of NT-020, animals were subjected to established behavioral tests just prior to stroke surgery and again on day 14 post-stroke. ANOVA revealed significant treatment effects ( p < 0.05), characterized by reductions of 11.8% and 24.4% in motor asymmetry and neurologic dysfunction, respectively, in NT-020-treated stroke animals compared to vehicle-treated stroke animals. Evaluation of cerebral infarction revealed a significant 75% decrement in mean glial scar area in the ischemic striatum of NT-020-treated stroke animals compared to that of vehicle-treated stroke animals ( p < 0.0005). Quantitative analysis of subventricular zone's cell proliferative activity revealed at least a one-fold increment in the number of BrdU-positive cells in the NT-020-treated stroke brains compared to vehicle-treated stroke brains ( p < 0.0005). Similarly, quantitative analysis of BrdU labeling in the ischemic striatal penumbra revealed at least a three-fold increase in the number of BrdU-positive cells in the NT-020-treated stroke brains compared to vehicle-treated stroke brains ( p < 0.0001). In addition, widespread double labeling of cells with BrdU and doublecortin was detected in NT-020-treated stroke brains (intact side 17% and ischemic side 75%), which was significantly higher than those seen in vehicle-treated stroke brains (intact side 5% and ischemic side 13%) ( p < 0.05). In contrast, only a small number of cells in NT-020-treated stroke brains double labeled with BrdU and GFAP (intact side 1% and ischemic side 2%), which was significantly lower than those vehicle-treated stroke brains (intact side 18% and ischemic side 35%) ( p < 0.0001). Endogenous neurogenic factors were also significantly upregulated in the ischemic brains of NT-020-treated stroke animals. These data demonstrate the remarkable neuroprotective effects of NT-020 when given prior to stroke, possibly acting via its neurogenic po
ISSN:1549-1684
1557-8577
DOI:10.1089/rej.2007.0608