Rapid Divergence of Genetic Variance‐Covariance Matrix within a Natural Population

The matrix of genetic variances and covariances (Gmatrix) represents the genetic architecture of multiple traits sharing developmental and genetic processes and is central for predicting phenotypic evolution. These predictions require that theGmatrix be stable. Yet the timescale and conditions promo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The American naturalist 2008-03, Vol.171 (3), p.291-304
Hauptverfasser: Doroszuk, Agnieszka, Wojewodzic, Marcin W., Gort, Gerrit, Kammenga, Jan E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 304
container_issue 3
container_start_page 291
container_title The American naturalist
container_volume 171
creator Doroszuk, Agnieszka
Wojewodzic, Marcin W.
Gort, Gerrit
Kammenga, Jan E.
description The matrix of genetic variances and covariances (Gmatrix) represents the genetic architecture of multiple traits sharing developmental and genetic processes and is central for predicting phenotypic evolution. These predictions require that theGmatrix be stable. Yet the timescale and conditions promotingGmatrix stability in natural populations remain unclear. We studied stability of theGmatrix in a 20‐year evolution field experiment, where a population of the cosmopolitan parthenogenetic soil nematodeAcrobeloides nanuswas subjected to drift and divergent selection (benign and stress environments). Selection regime did not influence the level of absolute genetic constraints: under both regimes, two genetic dimensions for three life‐history traits were identified. A substantial response to selection in principal components structure and in general matrix pattern was indicated by three statistical methods.Gstructure was also influenced by drift, with higher divergence under benign conditions. These results show that theGmatrix might evolve rapidly in natural populations. The observed high dynamics ofGstructure probably represents the general feature of asexual species and limits the predictive power ofGin phenotypic evolution analyses.
doi_str_mv 10.1086/527478
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_70289277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>10.1086/527478</jstor_id><sourcerecordid>10.1086/527478</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-f8601c89aa1e68a5627cd9e0244d9ba3bb40f6d1fefd0d7e213d6386112a072e3</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhS0EokOBNwBFCNgF_JfYZocGKEjlR6iwtW4cp_UoY6d20oFdH6HPyJPgUUKL2LDx1bW-e-6xD0IPCX5BsKxfVlRwIW-hFamYKCtG2W20whizEhMuDtC9lDa5VVxVd9EBkVQQQfkKnXyFwbXFG3dh46n1xhahK46st6MzxXeIDvLdr8urdbhYmuIjjNH9KHZuPHO-gOITjFOEvvgShqmH0QV_H93poE_2wVIP0bd3b0_W78vjz0cf1q-PS8NrMZadrDExUgEQW0uoaipMqyymnLeqAdY0HHd1SzrbtbgVlhLW1kzWhFDAglp2iF7NujvI3p3Ph_YQjUs6gNO9ayLEn3o3Re37fRmmJmlWC1qpPPx8Hh5iOJ9sGvXWJWP7HrwNU9ICU6moEP8FiaqowlJm8Mk_4CZM0ecfyIwUghL111oTQ0rRdnqIbru3SbDeR6nnKDP4eFGbmq1tb7Aluww8WwBIBvou5nTyy_9wNAfPJGeZezpzkzlzBk7DEG1KN96u9z2asU0aQ7yWYZgQxgVnvwF3jby8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198772199</pqid></control><display><type>article</type><title>Rapid Divergence of Genetic Variance‐Covariance Matrix within a Natural Population</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Doroszuk, Agnieszka ; Wojewodzic, Marcin W. ; Gort, Gerrit ; Kammenga, Jan E.</creator><contributor>Michael C. Whitlock ; Mark W. Blows</contributor><creatorcontrib>Doroszuk, Agnieszka ; Wojewodzic, Marcin W. ; Gort, Gerrit ; Kammenga, Jan E. ; Michael C. Whitlock ; Mark W. Blows</creatorcontrib><description>The matrix of genetic variances and covariances (Gmatrix) represents the genetic architecture of multiple traits sharing developmental and genetic processes and is central for predicting phenotypic evolution. These predictions require that theGmatrix be stable. Yet the timescale and conditions promotingGmatrix stability in natural populations remain unclear. We studied stability of theGmatrix in a 20‐year evolution field experiment, where a population of the cosmopolitan parthenogenetic soil nematodeAcrobeloides nanuswas subjected to drift and divergent selection (benign and stress environments). Selection regime did not influence the level of absolute genetic constraints: under both regimes, two genetic dimensions for three life‐history traits were identified. A substantial response to selection in principal components structure and in general matrix pattern was indicated by three statistical methods.Gstructure was also influenced by drift, with higher divergence under benign conditions. These results show that theGmatrix might evolve rapidly in natural populations. The observed high dynamics ofGstructure probably represents the general feature of asexual species and limits the predictive power ofGin phenotypic evolution analyses.</description><identifier>ISSN: 0003-0147</identifier><identifier>EISSN: 1537-5323</identifier><identifier>DOI: 10.1086/527478</identifier><identifier>PMID: 18271724</identifier><identifier>CODEN: AMNTA4</identifier><language>eng</language><publisher>Chicago, IL: The University of Chicago Press</publisher><subject>a-fasciatus ; Acrobeloides nanus ; allonemobius-socius ; Animal and plant ecology ; Animal, plant and microbial ecology ; Animals ; Biological and medical sciences ; caenorhabditis-elegans ; Copper ; Covariance matrices ; drosophila-melanogaster ; Ecosystem ; Environment ; Evolution ; Evolutionary genetics ; evolutionary quantitative genetics ; Fundamental and applied biological sciences. Psychology ; General aspects ; Genetic diversity ; Genetic Drift ; Genetic variance ; Genetic Variation ; Genetics ; Genetics, Population ; Genotype &amp; phenotype ; Habitat selection ; Habitats ; Heritability ; Hydrogen-Ion Concentration ; life-history traits ; Likelihood Functions ; Matrices ; Models, Genetic ; Natural populations ; Nematoda ; Nematoda - genetics ; Nematoda - growth &amp; development ; Nematodes ; Netherlands ; Phenotype ; phenotypic evolution ; Phenotypic traits ; Population genetics ; principal components ; Quantitative Trait, Heritable ; Random Allocation ; selection ; Selection, Genetic ; Soil ; Statistical methods</subject><ispartof>The American naturalist, 2008-03, Vol.171 (3), p.291-304</ispartof><rights>2008 by The University of Chicago.</rights><rights>2008 INIST-CNRS</rights><rights>Copyright University of Chicago, acting through its Press Mar 2008</rights><rights>Wageningen University &amp; Research</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-f8601c89aa1e68a5627cd9e0244d9ba3bb40f6d1fefd0d7e213d6386112a072e3</citedby><cites>FETCH-LOGICAL-c467t-f8601c89aa1e68a5627cd9e0244d9ba3bb40f6d1fefd0d7e213d6386112a072e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,799,881,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20143843$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18271724$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Michael C. Whitlock</contributor><contributor>Mark W. Blows</contributor><creatorcontrib>Doroszuk, Agnieszka</creatorcontrib><creatorcontrib>Wojewodzic, Marcin W.</creatorcontrib><creatorcontrib>Gort, Gerrit</creatorcontrib><creatorcontrib>Kammenga, Jan E.</creatorcontrib><title>Rapid Divergence of Genetic Variance‐Covariance Matrix within a Natural Population</title><title>The American naturalist</title><addtitle>Am Nat</addtitle><description>The matrix of genetic variances and covariances (Gmatrix) represents the genetic architecture of multiple traits sharing developmental and genetic processes and is central for predicting phenotypic evolution. These predictions require that theGmatrix be stable. Yet the timescale and conditions promotingGmatrix stability in natural populations remain unclear. We studied stability of theGmatrix in a 20‐year evolution field experiment, where a population of the cosmopolitan parthenogenetic soil nematodeAcrobeloides nanuswas subjected to drift and divergent selection (benign and stress environments). Selection regime did not influence the level of absolute genetic constraints: under both regimes, two genetic dimensions for three life‐history traits were identified. A substantial response to selection in principal components structure and in general matrix pattern was indicated by three statistical methods.Gstructure was also influenced by drift, with higher divergence under benign conditions. These results show that theGmatrix might evolve rapidly in natural populations. The observed high dynamics ofGstructure probably represents the general feature of asexual species and limits the predictive power ofGin phenotypic evolution analyses.</description><subject>a-fasciatus</subject><subject>Acrobeloides nanus</subject><subject>allonemobius-socius</subject><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>caenorhabditis-elegans</subject><subject>Copper</subject><subject>Covariance matrices</subject><subject>drosophila-melanogaster</subject><subject>Ecosystem</subject><subject>Environment</subject><subject>Evolution</subject><subject>Evolutionary genetics</subject><subject>evolutionary quantitative genetics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Genetic diversity</subject><subject>Genetic Drift</subject><subject>Genetic variance</subject><subject>Genetic Variation</subject><subject>Genetics</subject><subject>Genetics, Population</subject><subject>Genotype &amp; phenotype</subject><subject>Habitat selection</subject><subject>Habitats</subject><subject>Heritability</subject><subject>Hydrogen-Ion Concentration</subject><subject>life-history traits</subject><subject>Likelihood Functions</subject><subject>Matrices</subject><subject>Models, Genetic</subject><subject>Natural populations</subject><subject>Nematoda</subject><subject>Nematoda - genetics</subject><subject>Nematoda - growth &amp; development</subject><subject>Nematodes</subject><subject>Netherlands</subject><subject>Phenotype</subject><subject>phenotypic evolution</subject><subject>Phenotypic traits</subject><subject>Population genetics</subject><subject>principal components</subject><subject>Quantitative Trait, Heritable</subject><subject>Random Allocation</subject><subject>selection</subject><subject>Selection, Genetic</subject><subject>Soil</subject><subject>Statistical methods</subject><issn>0003-0147</issn><issn>1537-5323</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1u1DAUhS0EokOBNwBFCNgF_JfYZocGKEjlR6iwtW4cp_UoY6d20oFdH6HPyJPgUUKL2LDx1bW-e-6xD0IPCX5BsKxfVlRwIW-hFamYKCtG2W20whizEhMuDtC9lDa5VVxVd9EBkVQQQfkKnXyFwbXFG3dh46n1xhahK46st6MzxXeIDvLdr8urdbhYmuIjjNH9KHZuPHO-gOITjFOEvvgShqmH0QV_H93poE_2wVIP0bd3b0_W78vjz0cf1q-PS8NrMZadrDExUgEQW0uoaipMqyymnLeqAdY0HHd1SzrbtbgVlhLW1kzWhFDAglp2iF7NujvI3p3Ph_YQjUs6gNO9ayLEn3o3Re37fRmmJmlWC1qpPPx8Hh5iOJ9sGvXWJWP7HrwNU9ICU6moEP8FiaqowlJm8Mk_4CZM0ecfyIwUghL111oTQ0rRdnqIbru3SbDeR6nnKDP4eFGbmq1tb7Aluww8WwBIBvou5nTyy_9wNAfPJGeZezpzkzlzBk7DEG1KN96u9z2asU0aQ7yWYZgQxgVnvwF3jby8</recordid><startdate>20080301</startdate><enddate>20080301</enddate><creator>Doroszuk, Agnieszka</creator><creator>Wojewodzic, Marcin W.</creator><creator>Gort, Gerrit</creator><creator>Kammenga, Jan E.</creator><general>The University of Chicago Press</general><general>University of Chicago Press</general><general>University of Chicago, acting through its Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>QVL</scope></search><sort><creationdate>20080301</creationdate><title>Rapid Divergence of Genetic Variance‐Covariance Matrix within a Natural Population</title><author>Doroszuk, Agnieszka ; Wojewodzic, Marcin W. ; Gort, Gerrit ; Kammenga, Jan E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-f8601c89aa1e68a5627cd9e0244d9ba3bb40f6d1fefd0d7e213d6386112a072e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>a-fasciatus</topic><topic>Acrobeloides nanus</topic><topic>allonemobius-socius</topic><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>caenorhabditis-elegans</topic><topic>Copper</topic><topic>Covariance matrices</topic><topic>drosophila-melanogaster</topic><topic>Ecosystem</topic><topic>Environment</topic><topic>Evolution</topic><topic>Evolutionary genetics</topic><topic>evolutionary quantitative genetics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Genetic diversity</topic><topic>Genetic Drift</topic><topic>Genetic variance</topic><topic>Genetic Variation</topic><topic>Genetics</topic><topic>Genetics, Population</topic><topic>Genotype &amp; phenotype</topic><topic>Habitat selection</topic><topic>Habitats</topic><topic>Heritability</topic><topic>Hydrogen-Ion Concentration</topic><topic>life-history traits</topic><topic>Likelihood Functions</topic><topic>Matrices</topic><topic>Models, Genetic</topic><topic>Natural populations</topic><topic>Nematoda</topic><topic>Nematoda - genetics</topic><topic>Nematoda - growth &amp; development</topic><topic>Nematodes</topic><topic>Netherlands</topic><topic>Phenotype</topic><topic>phenotypic evolution</topic><topic>Phenotypic traits</topic><topic>Population genetics</topic><topic>principal components</topic><topic>Quantitative Trait, Heritable</topic><topic>Random Allocation</topic><topic>selection</topic><topic>Selection, Genetic</topic><topic>Soil</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doroszuk, Agnieszka</creatorcontrib><creatorcontrib>Wojewodzic, Marcin W.</creatorcontrib><creatorcontrib>Gort, Gerrit</creatorcontrib><creatorcontrib>Kammenga, Jan E.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>NARCIS:Publications</collection><jtitle>The American naturalist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Doroszuk, Agnieszka</au><au>Wojewodzic, Marcin W.</au><au>Gort, Gerrit</au><au>Kammenga, Jan E.</au><au>Michael C. Whitlock</au><au>Mark W. Blows</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid Divergence of Genetic Variance‐Covariance Matrix within a Natural Population</atitle><jtitle>The American naturalist</jtitle><addtitle>Am Nat</addtitle><date>2008-03-01</date><risdate>2008</risdate><volume>171</volume><issue>3</issue><spage>291</spage><epage>304</epage><pages>291-304</pages><issn>0003-0147</issn><eissn>1537-5323</eissn><coden>AMNTA4</coden><abstract>The matrix of genetic variances and covariances (Gmatrix) represents the genetic architecture of multiple traits sharing developmental and genetic processes and is central for predicting phenotypic evolution. These predictions require that theGmatrix be stable. Yet the timescale and conditions promotingGmatrix stability in natural populations remain unclear. We studied stability of theGmatrix in a 20‐year evolution field experiment, where a population of the cosmopolitan parthenogenetic soil nematodeAcrobeloides nanuswas subjected to drift and divergent selection (benign and stress environments). Selection regime did not influence the level of absolute genetic constraints: under both regimes, two genetic dimensions for three life‐history traits were identified. A substantial response to selection in principal components structure and in general matrix pattern was indicated by three statistical methods.Gstructure was also influenced by drift, with higher divergence under benign conditions. These results show that theGmatrix might evolve rapidly in natural populations. The observed high dynamics ofGstructure probably represents the general feature of asexual species and limits the predictive power ofGin phenotypic evolution analyses.</abstract><cop>Chicago, IL</cop><pub>The University of Chicago Press</pub><pmid>18271724</pmid><doi>10.1086/527478</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-0147
ispartof The American naturalist, 2008-03, Vol.171 (3), p.291-304
issn 0003-0147
1537-5323
language eng
recordid cdi_proquest_miscellaneous_70289277
source Jstor Complete Legacy; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects a-fasciatus
Acrobeloides nanus
allonemobius-socius
Animal and plant ecology
Animal, plant and microbial ecology
Animals
Biological and medical sciences
caenorhabditis-elegans
Copper
Covariance matrices
drosophila-melanogaster
Ecosystem
Environment
Evolution
Evolutionary genetics
evolutionary quantitative genetics
Fundamental and applied biological sciences. Psychology
General aspects
Genetic diversity
Genetic Drift
Genetic variance
Genetic Variation
Genetics
Genetics, Population
Genotype & phenotype
Habitat selection
Habitats
Heritability
Hydrogen-Ion Concentration
life-history traits
Likelihood Functions
Matrices
Models, Genetic
Natural populations
Nematoda
Nematoda - genetics
Nematoda - growth & development
Nematodes
Netherlands
Phenotype
phenotypic evolution
Phenotypic traits
Population genetics
principal components
Quantitative Trait, Heritable
Random Allocation
selection
Selection, Genetic
Soil
Statistical methods
title Rapid Divergence of Genetic Variance‐Covariance Matrix within a Natural Population
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T18%3A44%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20Divergence%20of%20Genetic%20Variance%E2%80%90Covariance%20Matrix%20within%20a%20Natural%20Population&rft.jtitle=The%20American%20naturalist&rft.au=Doroszuk,%20Agnieszka&rft.date=2008-03-01&rft.volume=171&rft.issue=3&rft.spage=291&rft.epage=304&rft.pages=291-304&rft.issn=0003-0147&rft.eissn=1537-5323&rft.coden=AMNTA4&rft_id=info:doi/10.1086/527478&rft_dat=%3Cjstor_proqu%3E10.1086/527478%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=198772199&rft_id=info:pmid/18271724&rft_jstor_id=10.1086/527478&rfr_iscdi=true