Rapid Divergence of Genetic Variance‐Covariance Matrix within a Natural Population
The matrix of genetic variances and covariances (Gmatrix) represents the genetic architecture of multiple traits sharing developmental and genetic processes and is central for predicting phenotypic evolution. These predictions require that theGmatrix be stable. Yet the timescale and conditions promo...
Gespeichert in:
Veröffentlicht in: | The American naturalist 2008-03, Vol.171 (3), p.291-304 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 304 |
---|---|
container_issue | 3 |
container_start_page | 291 |
container_title | The American naturalist |
container_volume | 171 |
creator | Doroszuk, Agnieszka Wojewodzic, Marcin W. Gort, Gerrit Kammenga, Jan E. |
description | The matrix of genetic variances and covariances (Gmatrix) represents the genetic architecture of multiple traits sharing developmental and genetic processes and is central for predicting phenotypic evolution. These predictions require that theGmatrix be stable. Yet the timescale and conditions promotingGmatrix stability in natural populations remain unclear. We studied stability of theGmatrix in a 20‐year evolution field experiment, where a population of the cosmopolitan parthenogenetic soil nematodeAcrobeloides nanuswas subjected to drift and divergent selection (benign and stress environments). Selection regime did not influence the level of absolute genetic constraints: under both regimes, two genetic dimensions for three life‐history traits were identified. A substantial response to selection in principal components structure and in general matrix pattern was indicated by three statistical methods.Gstructure was also influenced by drift, with higher divergence under benign conditions. These results show that theGmatrix might evolve rapidly in natural populations. The observed high dynamics ofGstructure probably represents the general feature of asexual species and limits the predictive power ofGin phenotypic evolution analyses. |
doi_str_mv | 10.1086/527478 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_70289277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>10.1086/527478</jstor_id><sourcerecordid>10.1086/527478</sourcerecordid><originalsourceid>FETCH-LOGICAL-c467t-f8601c89aa1e68a5627cd9e0244d9ba3bb40f6d1fefd0d7e213d6386112a072e3</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhS0EokOBNwBFCNgF_JfYZocGKEjlR6iwtW4cp_UoY6d20oFdH6HPyJPgUUKL2LDx1bW-e-6xD0IPCX5BsKxfVlRwIW-hFamYKCtG2W20whizEhMuDtC9lDa5VVxVd9EBkVQQQfkKnXyFwbXFG3dh46n1xhahK46st6MzxXeIDvLdr8urdbhYmuIjjNH9KHZuPHO-gOITjFOEvvgShqmH0QV_H93poE_2wVIP0bd3b0_W78vjz0cf1q-PS8NrMZadrDExUgEQW0uoaipMqyymnLeqAdY0HHd1SzrbtbgVlhLW1kzWhFDAglp2iF7NujvI3p3Ph_YQjUs6gNO9ayLEn3o3Re37fRmmJmlWC1qpPPx8Hh5iOJ9sGvXWJWP7HrwNU9ICU6moEP8FiaqowlJm8Mk_4CZM0ecfyIwUghL111oTQ0rRdnqIbru3SbDeR6nnKDP4eFGbmq1tb7Aluww8WwBIBvou5nTyy_9wNAfPJGeZezpzkzlzBk7DEG1KN96u9z2asU0aQ7yWYZgQxgVnvwF3jby8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198772199</pqid></control><display><type>article</type><title>Rapid Divergence of Genetic Variance‐Covariance Matrix within a Natural Population</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Doroszuk, Agnieszka ; Wojewodzic, Marcin W. ; Gort, Gerrit ; Kammenga, Jan E.</creator><contributor>Michael C. Whitlock ; Mark W. Blows</contributor><creatorcontrib>Doroszuk, Agnieszka ; Wojewodzic, Marcin W. ; Gort, Gerrit ; Kammenga, Jan E. ; Michael C. Whitlock ; Mark W. Blows</creatorcontrib><description>The matrix of genetic variances and covariances (Gmatrix) represents the genetic architecture of multiple traits sharing developmental and genetic processes and is central for predicting phenotypic evolution. These predictions require that theGmatrix be stable. Yet the timescale and conditions promotingGmatrix stability in natural populations remain unclear. We studied stability of theGmatrix in a 20‐year evolution field experiment, where a population of the cosmopolitan parthenogenetic soil nematodeAcrobeloides nanuswas subjected to drift and divergent selection (benign and stress environments). Selection regime did not influence the level of absolute genetic constraints: under both regimes, two genetic dimensions for three life‐history traits were identified. A substantial response to selection in principal components structure and in general matrix pattern was indicated by three statistical methods.Gstructure was also influenced by drift, with higher divergence under benign conditions. These results show that theGmatrix might evolve rapidly in natural populations. The observed high dynamics ofGstructure probably represents the general feature of asexual species and limits the predictive power ofGin phenotypic evolution analyses.</description><identifier>ISSN: 0003-0147</identifier><identifier>EISSN: 1537-5323</identifier><identifier>DOI: 10.1086/527478</identifier><identifier>PMID: 18271724</identifier><identifier>CODEN: AMNTA4</identifier><language>eng</language><publisher>Chicago, IL: The University of Chicago Press</publisher><subject>a-fasciatus ; Acrobeloides nanus ; allonemobius-socius ; Animal and plant ecology ; Animal, plant and microbial ecology ; Animals ; Biological and medical sciences ; caenorhabditis-elegans ; Copper ; Covariance matrices ; drosophila-melanogaster ; Ecosystem ; Environment ; Evolution ; Evolutionary genetics ; evolutionary quantitative genetics ; Fundamental and applied biological sciences. Psychology ; General aspects ; Genetic diversity ; Genetic Drift ; Genetic variance ; Genetic Variation ; Genetics ; Genetics, Population ; Genotype & phenotype ; Habitat selection ; Habitats ; Heritability ; Hydrogen-Ion Concentration ; life-history traits ; Likelihood Functions ; Matrices ; Models, Genetic ; Natural populations ; Nematoda ; Nematoda - genetics ; Nematoda - growth & development ; Nematodes ; Netherlands ; Phenotype ; phenotypic evolution ; Phenotypic traits ; Population genetics ; principal components ; Quantitative Trait, Heritable ; Random Allocation ; selection ; Selection, Genetic ; Soil ; Statistical methods</subject><ispartof>The American naturalist, 2008-03, Vol.171 (3), p.291-304</ispartof><rights>2008 by The University of Chicago.</rights><rights>2008 INIST-CNRS</rights><rights>Copyright University of Chicago, acting through its Press Mar 2008</rights><rights>Wageningen University & Research</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c467t-f8601c89aa1e68a5627cd9e0244d9ba3bb40f6d1fefd0d7e213d6386112a072e3</citedby><cites>FETCH-LOGICAL-c467t-f8601c89aa1e68a5627cd9e0244d9ba3bb40f6d1fefd0d7e213d6386112a072e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,799,881,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20143843$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18271724$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Michael C. Whitlock</contributor><contributor>Mark W. Blows</contributor><creatorcontrib>Doroszuk, Agnieszka</creatorcontrib><creatorcontrib>Wojewodzic, Marcin W.</creatorcontrib><creatorcontrib>Gort, Gerrit</creatorcontrib><creatorcontrib>Kammenga, Jan E.</creatorcontrib><title>Rapid Divergence of Genetic Variance‐Covariance Matrix within a Natural Population</title><title>The American naturalist</title><addtitle>Am Nat</addtitle><description>The matrix of genetic variances and covariances (Gmatrix) represents the genetic architecture of multiple traits sharing developmental and genetic processes and is central for predicting phenotypic evolution. These predictions require that theGmatrix be stable. Yet the timescale and conditions promotingGmatrix stability in natural populations remain unclear. We studied stability of theGmatrix in a 20‐year evolution field experiment, where a population of the cosmopolitan parthenogenetic soil nematodeAcrobeloides nanuswas subjected to drift and divergent selection (benign and stress environments). Selection regime did not influence the level of absolute genetic constraints: under both regimes, two genetic dimensions for three life‐history traits were identified. A substantial response to selection in principal components structure and in general matrix pattern was indicated by three statistical methods.Gstructure was also influenced by drift, with higher divergence under benign conditions. These results show that theGmatrix might evolve rapidly in natural populations. The observed high dynamics ofGstructure probably represents the general feature of asexual species and limits the predictive power ofGin phenotypic evolution analyses.</description><subject>a-fasciatus</subject><subject>Acrobeloides nanus</subject><subject>allonemobius-socius</subject><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>caenorhabditis-elegans</subject><subject>Copper</subject><subject>Covariance matrices</subject><subject>drosophila-melanogaster</subject><subject>Ecosystem</subject><subject>Environment</subject><subject>Evolution</subject><subject>Evolutionary genetics</subject><subject>evolutionary quantitative genetics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Genetic diversity</subject><subject>Genetic Drift</subject><subject>Genetic variance</subject><subject>Genetic Variation</subject><subject>Genetics</subject><subject>Genetics, Population</subject><subject>Genotype & phenotype</subject><subject>Habitat selection</subject><subject>Habitats</subject><subject>Heritability</subject><subject>Hydrogen-Ion Concentration</subject><subject>life-history traits</subject><subject>Likelihood Functions</subject><subject>Matrices</subject><subject>Models, Genetic</subject><subject>Natural populations</subject><subject>Nematoda</subject><subject>Nematoda - genetics</subject><subject>Nematoda - growth & development</subject><subject>Nematodes</subject><subject>Netherlands</subject><subject>Phenotype</subject><subject>phenotypic evolution</subject><subject>Phenotypic traits</subject><subject>Population genetics</subject><subject>principal components</subject><subject>Quantitative Trait, Heritable</subject><subject>Random Allocation</subject><subject>selection</subject><subject>Selection, Genetic</subject><subject>Soil</subject><subject>Statistical methods</subject><issn>0003-0147</issn><issn>1537-5323</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1u1DAUhS0EokOBNwBFCNgF_JfYZocGKEjlR6iwtW4cp_UoY6d20oFdH6HPyJPgUUKL2LDx1bW-e-6xD0IPCX5BsKxfVlRwIW-hFamYKCtG2W20whizEhMuDtC9lDa5VVxVd9EBkVQQQfkKnXyFwbXFG3dh46n1xhahK46st6MzxXeIDvLdr8urdbhYmuIjjNH9KHZuPHO-gOITjFOEvvgShqmH0QV_H93poE_2wVIP0bd3b0_W78vjz0cf1q-PS8NrMZadrDExUgEQW0uoaipMqyymnLeqAdY0HHd1SzrbtbgVlhLW1kzWhFDAglp2iF7NujvI3p3Ph_YQjUs6gNO9ayLEn3o3Re37fRmmJmlWC1qpPPx8Hh5iOJ9sGvXWJWP7HrwNU9ICU6moEP8FiaqowlJm8Mk_4CZM0ecfyIwUghL111oTQ0rRdnqIbru3SbDeR6nnKDP4eFGbmq1tb7Aluww8WwBIBvou5nTyy_9wNAfPJGeZezpzkzlzBk7DEG1KN96u9z2asU0aQ7yWYZgQxgVnvwF3jby8</recordid><startdate>20080301</startdate><enddate>20080301</enddate><creator>Doroszuk, Agnieszka</creator><creator>Wojewodzic, Marcin W.</creator><creator>Gort, Gerrit</creator><creator>Kammenga, Jan E.</creator><general>The University of Chicago Press</general><general>University of Chicago Press</general><general>University of Chicago, acting through its Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>QVL</scope></search><sort><creationdate>20080301</creationdate><title>Rapid Divergence of Genetic Variance‐Covariance Matrix within a Natural Population</title><author>Doroszuk, Agnieszka ; Wojewodzic, Marcin W. ; Gort, Gerrit ; Kammenga, Jan E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c467t-f8601c89aa1e68a5627cd9e0244d9ba3bb40f6d1fefd0d7e213d6386112a072e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>a-fasciatus</topic><topic>Acrobeloides nanus</topic><topic>allonemobius-socius</topic><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>caenorhabditis-elegans</topic><topic>Copper</topic><topic>Covariance matrices</topic><topic>drosophila-melanogaster</topic><topic>Ecosystem</topic><topic>Environment</topic><topic>Evolution</topic><topic>Evolutionary genetics</topic><topic>evolutionary quantitative genetics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Genetic diversity</topic><topic>Genetic Drift</topic><topic>Genetic variance</topic><topic>Genetic Variation</topic><topic>Genetics</topic><topic>Genetics, Population</topic><topic>Genotype & phenotype</topic><topic>Habitat selection</topic><topic>Habitats</topic><topic>Heritability</topic><topic>Hydrogen-Ion Concentration</topic><topic>life-history traits</topic><topic>Likelihood Functions</topic><topic>Matrices</topic><topic>Models, Genetic</topic><topic>Natural populations</topic><topic>Nematoda</topic><topic>Nematoda - genetics</topic><topic>Nematoda - growth & development</topic><topic>Nematodes</topic><topic>Netherlands</topic><topic>Phenotype</topic><topic>phenotypic evolution</topic><topic>Phenotypic traits</topic><topic>Population genetics</topic><topic>principal components</topic><topic>Quantitative Trait, Heritable</topic><topic>Random Allocation</topic><topic>selection</topic><topic>Selection, Genetic</topic><topic>Soil</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doroszuk, Agnieszka</creatorcontrib><creatorcontrib>Wojewodzic, Marcin W.</creatorcontrib><creatorcontrib>Gort, Gerrit</creatorcontrib><creatorcontrib>Kammenga, Jan E.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>NARCIS:Publications</collection><jtitle>The American naturalist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Doroszuk, Agnieszka</au><au>Wojewodzic, Marcin W.</au><au>Gort, Gerrit</au><au>Kammenga, Jan E.</au><au>Michael C. Whitlock</au><au>Mark W. Blows</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid Divergence of Genetic Variance‐Covariance Matrix within a Natural Population</atitle><jtitle>The American naturalist</jtitle><addtitle>Am Nat</addtitle><date>2008-03-01</date><risdate>2008</risdate><volume>171</volume><issue>3</issue><spage>291</spage><epage>304</epage><pages>291-304</pages><issn>0003-0147</issn><eissn>1537-5323</eissn><coden>AMNTA4</coden><abstract>The matrix of genetic variances and covariances (Gmatrix) represents the genetic architecture of multiple traits sharing developmental and genetic processes and is central for predicting phenotypic evolution. These predictions require that theGmatrix be stable. Yet the timescale and conditions promotingGmatrix stability in natural populations remain unclear. We studied stability of theGmatrix in a 20‐year evolution field experiment, where a population of the cosmopolitan parthenogenetic soil nematodeAcrobeloides nanuswas subjected to drift and divergent selection (benign and stress environments). Selection regime did not influence the level of absolute genetic constraints: under both regimes, two genetic dimensions for three life‐history traits were identified. A substantial response to selection in principal components structure and in general matrix pattern was indicated by three statistical methods.Gstructure was also influenced by drift, with higher divergence under benign conditions. These results show that theGmatrix might evolve rapidly in natural populations. The observed high dynamics ofGstructure probably represents the general feature of asexual species and limits the predictive power ofGin phenotypic evolution analyses.</abstract><cop>Chicago, IL</cop><pub>The University of Chicago Press</pub><pmid>18271724</pmid><doi>10.1086/527478</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-0147 |
ispartof | The American naturalist, 2008-03, Vol.171 (3), p.291-304 |
issn | 0003-0147 1537-5323 |
language | eng |
recordid | cdi_proquest_miscellaneous_70289277 |
source | Jstor Complete Legacy; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | a-fasciatus Acrobeloides nanus allonemobius-socius Animal and plant ecology Animal, plant and microbial ecology Animals Biological and medical sciences caenorhabditis-elegans Copper Covariance matrices drosophila-melanogaster Ecosystem Environment Evolution Evolutionary genetics evolutionary quantitative genetics Fundamental and applied biological sciences. Psychology General aspects Genetic diversity Genetic Drift Genetic variance Genetic Variation Genetics Genetics, Population Genotype & phenotype Habitat selection Habitats Heritability Hydrogen-Ion Concentration life-history traits Likelihood Functions Matrices Models, Genetic Natural populations Nematoda Nematoda - genetics Nematoda - growth & development Nematodes Netherlands Phenotype phenotypic evolution Phenotypic traits Population genetics principal components Quantitative Trait, Heritable Random Allocation selection Selection, Genetic Soil Statistical methods |
title | Rapid Divergence of Genetic Variance‐Covariance Matrix within a Natural Population |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T18%3A44%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20Divergence%20of%20Genetic%20Variance%E2%80%90Covariance%20Matrix%20within%20a%20Natural%20Population&rft.jtitle=The%20American%20naturalist&rft.au=Doroszuk,%20Agnieszka&rft.date=2008-03-01&rft.volume=171&rft.issue=3&rft.spage=291&rft.epage=304&rft.pages=291-304&rft.issn=0003-0147&rft.eissn=1537-5323&rft.coden=AMNTA4&rft_id=info:doi/10.1086/527478&rft_dat=%3Cjstor_proqu%3E10.1086/527478%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=198772199&rft_id=info:pmid/18271724&rft_jstor_id=10.1086/527478&rfr_iscdi=true |