Geometrical regularization of displacement fields for histological image registration
This article tackles the registration of 2-D biomedical images (histological sections, autoradiographs, cryosections, etc.). Our goal is to adequately match anatomical features of interest without inducing biologically improbable tissue distortions. We observe that the large variety of registration...
Gespeichert in:
Veröffentlicht in: | Medical image analysis 2008-02, Vol.12 (1), p.16-25 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 25 |
---|---|
container_issue | 1 |
container_start_page | 16 |
container_title | Medical image analysis |
container_volume | 12 |
creator | Pitiot, Alain Guimond, Alexandre |
description | This article tackles the registration of 2-D biomedical images (histological sections, autoradiographs, cryosections, etc.). Our goal is to adequately match anatomical features of interest without inducing biologically improbable tissue distortions. We observe that the large variety of registration applications – 3-D volume reconstruction, multimodal molecular mapping, etc. – induce a no less diverse set of requirements in terms of accuracy and robustness. In turn, these directly translate into regularization constraints on the deformation model, which should ideally be specifiable by the user.
We propose an adaptive regularization approach where the rigidity constraints are informed by the registration application at hand and whose support is controlled by the geometry of the images to be registered. For each site of a sparse lattice over which a displacement field has been computed, our algorithm estimates, in a robust fashion, a rigid or affine transformation within a circular neighbourhood cut to fit the local geometry around the site.
We investigate the behaviour of this technique and discuss its sensitivity to the rigidity parameter. |
doi_str_mv | 10.1016/j.media.2007.06.007 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70288499</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S136184150700059X</els_id><sourcerecordid>21036942</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-debf39c0f34f7e4ecf90a62cd46b09ece1fbc225355fe6ced7aa6a412219be23</originalsourceid><addsrcrecordid>eNqFkDtPwzAUhS0EoqXwC5BQJrYEv-I0AwNCUJAqsZTZcpzr4iqJi50gwa_HaSvYYDp-nO9c3YPQJcEZwUTcbLIWaqsyinGRYZFFOUJTwgRJ55yy458zySfoLIQNjg7O8SmakEKU8cam6HUBroXeW62axMN6aJS3X6q3rkucSWobto3S0ELXJ8ZCU4fEOJ-82dC7xq13mG3VGkY4Pvodeo5OjGoCXBx0hlaPD6v7p3T5sni-v1ummue8T2uoDCs1NoybAjhoU2IlqK65qHAJGoipNKU5y3MDQkNdKCUUJ5SSsgLKZuh6H7v17n2A0MvWBg1NozpwQ5AFpvM5L8t_jZRgJko-JrK9UXsXggcjtz6u5z8lwXJsXW7krnU5ti6xkFEidXWIH6r4-8scao6G270BYhkfFrwM2kIXN7IedC9rZ_8c8A34Ypaz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21036942</pqid></control><display><type>article</type><title>Geometrical regularization of displacement fields for histological image registration</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Pitiot, Alain ; Guimond, Alexandre</creator><creatorcontrib>Pitiot, Alain ; Guimond, Alexandre</creatorcontrib><description>This article tackles the registration of 2-D biomedical images (histological sections, autoradiographs, cryosections, etc.). Our goal is to adequately match anatomical features of interest without inducing biologically improbable tissue distortions. We observe that the large variety of registration applications – 3-D volume reconstruction, multimodal molecular mapping, etc. – induce a no less diverse set of requirements in terms of accuracy and robustness. In turn, these directly translate into regularization constraints on the deformation model, which should ideally be specifiable by the user.
We propose an adaptive regularization approach where the rigidity constraints are informed by the registration application at hand and whose support is controlled by the geometry of the images to be registered. For each site of a sparse lattice over which a displacement field has been computed, our algorithm estimates, in a robust fashion, a rigid or affine transformation within a circular neighbourhood cut to fit the local geometry around the site.
We investigate the behaviour of this technique and discuss its sensitivity to the rigidity parameter.</description><identifier>ISSN: 1361-8415</identifier><identifier>EISSN: 1361-8423</identifier><identifier>DOI: 10.1016/j.media.2007.06.007</identifier><identifier>PMID: 17690003</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Algorithms ; Animals ; Brain Mapping - methods ; Histological Techniques ; Histology ; Image Enhancement - methods ; Image Processing, Computer-Assisted - methods ; Imaging, Three-Dimensional ; Mice ; Reconstruction ; Registration ; Regularization</subject><ispartof>Medical image analysis, 2008-02, Vol.12 (1), p.16-25</ispartof><rights>2007 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-debf39c0f34f7e4ecf90a62cd46b09ece1fbc225355fe6ced7aa6a412219be23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.media.2007.06.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17690003$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pitiot, Alain</creatorcontrib><creatorcontrib>Guimond, Alexandre</creatorcontrib><title>Geometrical regularization of displacement fields for histological image registration</title><title>Medical image analysis</title><addtitle>Med Image Anal</addtitle><description>This article tackles the registration of 2-D biomedical images (histological sections, autoradiographs, cryosections, etc.). Our goal is to adequately match anatomical features of interest without inducing biologically improbable tissue distortions. We observe that the large variety of registration applications – 3-D volume reconstruction, multimodal molecular mapping, etc. – induce a no less diverse set of requirements in terms of accuracy and robustness. In turn, these directly translate into regularization constraints on the deformation model, which should ideally be specifiable by the user.
We propose an adaptive regularization approach where the rigidity constraints are informed by the registration application at hand and whose support is controlled by the geometry of the images to be registered. For each site of a sparse lattice over which a displacement field has been computed, our algorithm estimates, in a robust fashion, a rigid or affine transformation within a circular neighbourhood cut to fit the local geometry around the site.
We investigate the behaviour of this technique and discuss its sensitivity to the rigidity parameter.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Brain Mapping - methods</subject><subject>Histological Techniques</subject><subject>Histology</subject><subject>Image Enhancement - methods</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Imaging, Three-Dimensional</subject><subject>Mice</subject><subject>Reconstruction</subject><subject>Registration</subject><subject>Regularization</subject><issn>1361-8415</issn><issn>1361-8423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkDtPwzAUhS0EoqXwC5BQJrYEv-I0AwNCUJAqsZTZcpzr4iqJi50gwa_HaSvYYDp-nO9c3YPQJcEZwUTcbLIWaqsyinGRYZFFOUJTwgRJ55yy458zySfoLIQNjg7O8SmakEKU8cam6HUBroXeW62axMN6aJS3X6q3rkucSWobto3S0ELXJ8ZCU4fEOJ-82dC7xq13mG3VGkY4Pvodeo5OjGoCXBx0hlaPD6v7p3T5sni-v1ummue8T2uoDCs1NoybAjhoU2IlqK65qHAJGoipNKU5y3MDQkNdKCUUJ5SSsgLKZuh6H7v17n2A0MvWBg1NozpwQ5AFpvM5L8t_jZRgJko-JrK9UXsXggcjtz6u5z8lwXJsXW7krnU5ti6xkFEidXWIH6r4-8scao6G270BYhkfFrwM2kIXN7IedC9rZ_8c8A34Ypaz</recordid><startdate>20080201</startdate><enddate>20080201</enddate><creator>Pitiot, Alain</creator><creator>Guimond, Alexandre</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20080201</creationdate><title>Geometrical regularization of displacement fields for histological image registration</title><author>Pitiot, Alain ; Guimond, Alexandre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-debf39c0f34f7e4ecf90a62cd46b09ece1fbc225355fe6ced7aa6a412219be23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Brain Mapping - methods</topic><topic>Histological Techniques</topic><topic>Histology</topic><topic>Image Enhancement - methods</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Imaging, Three-Dimensional</topic><topic>Mice</topic><topic>Reconstruction</topic><topic>Registration</topic><topic>Regularization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pitiot, Alain</creatorcontrib><creatorcontrib>Guimond, Alexandre</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Medical image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pitiot, Alain</au><au>Guimond, Alexandre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometrical regularization of displacement fields for histological image registration</atitle><jtitle>Medical image analysis</jtitle><addtitle>Med Image Anal</addtitle><date>2008-02-01</date><risdate>2008</risdate><volume>12</volume><issue>1</issue><spage>16</spage><epage>25</epage><pages>16-25</pages><issn>1361-8415</issn><eissn>1361-8423</eissn><abstract>This article tackles the registration of 2-D biomedical images (histological sections, autoradiographs, cryosections, etc.). Our goal is to adequately match anatomical features of interest without inducing biologically improbable tissue distortions. We observe that the large variety of registration applications – 3-D volume reconstruction, multimodal molecular mapping, etc. – induce a no less diverse set of requirements in terms of accuracy and robustness. In turn, these directly translate into regularization constraints on the deformation model, which should ideally be specifiable by the user.
We propose an adaptive regularization approach where the rigidity constraints are informed by the registration application at hand and whose support is controlled by the geometry of the images to be registered. For each site of a sparse lattice over which a displacement field has been computed, our algorithm estimates, in a robust fashion, a rigid or affine transformation within a circular neighbourhood cut to fit the local geometry around the site.
We investigate the behaviour of this technique and discuss its sensitivity to the rigidity parameter.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>17690003</pmid><doi>10.1016/j.media.2007.06.007</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1361-8415 |
ispartof | Medical image analysis, 2008-02, Vol.12 (1), p.16-25 |
issn | 1361-8415 1361-8423 |
language | eng |
recordid | cdi_proquest_miscellaneous_70288499 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Algorithms Animals Brain Mapping - methods Histological Techniques Histology Image Enhancement - methods Image Processing, Computer-Assisted - methods Imaging, Three-Dimensional Mice Reconstruction Registration Regularization |
title | Geometrical regularization of displacement fields for histological image registration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A51%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometrical%20regularization%20of%20displacement%20fields%20for%20histological%20image%20registration&rft.jtitle=Medical%20image%20analysis&rft.au=Pitiot,%20Alain&rft.date=2008-02-01&rft.volume=12&rft.issue=1&rft.spage=16&rft.epage=25&rft.pages=16-25&rft.issn=1361-8415&rft.eissn=1361-8423&rft_id=info:doi/10.1016/j.media.2007.06.007&rft_dat=%3Cproquest_cross%3E21036942%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21036942&rft_id=info:pmid/17690003&rft_els_id=S136184150700059X&rfr_iscdi=true |