Geometrical regularization of displacement fields for histological image registration

This article tackles the registration of 2-D biomedical images (histological sections, autoradiographs, cryosections, etc.). Our goal is to adequately match anatomical features of interest without inducing biologically improbable tissue distortions. We observe that the large variety of registration...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical image analysis 2008-02, Vol.12 (1), p.16-25
Hauptverfasser: Pitiot, Alain, Guimond, Alexandre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 25
container_issue 1
container_start_page 16
container_title Medical image analysis
container_volume 12
creator Pitiot, Alain
Guimond, Alexandre
description This article tackles the registration of 2-D biomedical images (histological sections, autoradiographs, cryosections, etc.). Our goal is to adequately match anatomical features of interest without inducing biologically improbable tissue distortions. We observe that the large variety of registration applications – 3-D volume reconstruction, multimodal molecular mapping, etc. – induce a no less diverse set of requirements in terms of accuracy and robustness. In turn, these directly translate into regularization constraints on the deformation model, which should ideally be specifiable by the user. We propose an adaptive regularization approach where the rigidity constraints are informed by the registration application at hand and whose support is controlled by the geometry of the images to be registered. For each site of a sparse lattice over which a displacement field has been computed, our algorithm estimates, in a robust fashion, a rigid or affine transformation within a circular neighbourhood cut to fit the local geometry around the site. We investigate the behaviour of this technique and discuss its sensitivity to the rigidity parameter.
doi_str_mv 10.1016/j.media.2007.06.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70288499</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S136184150700059X</els_id><sourcerecordid>21036942</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-debf39c0f34f7e4ecf90a62cd46b09ece1fbc225355fe6ced7aa6a412219be23</originalsourceid><addsrcrecordid>eNqFkDtPwzAUhS0EoqXwC5BQJrYEv-I0AwNCUJAqsZTZcpzr4iqJi50gwa_HaSvYYDp-nO9c3YPQJcEZwUTcbLIWaqsyinGRYZFFOUJTwgRJ55yy458zySfoLIQNjg7O8SmakEKU8cam6HUBroXeW62axMN6aJS3X6q3rkucSWobto3S0ELXJ8ZCU4fEOJ-82dC7xq13mG3VGkY4Pvodeo5OjGoCXBx0hlaPD6v7p3T5sni-v1ummue8T2uoDCs1NoybAjhoU2IlqK65qHAJGoipNKU5y3MDQkNdKCUUJ5SSsgLKZuh6H7v17n2A0MvWBg1NozpwQ5AFpvM5L8t_jZRgJko-JrK9UXsXggcjtz6u5z8lwXJsXW7krnU5ti6xkFEidXWIH6r4-8scao6G270BYhkfFrwM2kIXN7IedC9rZ_8c8A34Ypaz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21036942</pqid></control><display><type>article</type><title>Geometrical regularization of displacement fields for histological image registration</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Pitiot, Alain ; Guimond, Alexandre</creator><creatorcontrib>Pitiot, Alain ; Guimond, Alexandre</creatorcontrib><description>This article tackles the registration of 2-D biomedical images (histological sections, autoradiographs, cryosections, etc.). Our goal is to adequately match anatomical features of interest without inducing biologically improbable tissue distortions. We observe that the large variety of registration applications – 3-D volume reconstruction, multimodal molecular mapping, etc. – induce a no less diverse set of requirements in terms of accuracy and robustness. In turn, these directly translate into regularization constraints on the deformation model, which should ideally be specifiable by the user. We propose an adaptive regularization approach where the rigidity constraints are informed by the registration application at hand and whose support is controlled by the geometry of the images to be registered. For each site of a sparse lattice over which a displacement field has been computed, our algorithm estimates, in a robust fashion, a rigid or affine transformation within a circular neighbourhood cut to fit the local geometry around the site. We investigate the behaviour of this technique and discuss its sensitivity to the rigidity parameter.</description><identifier>ISSN: 1361-8415</identifier><identifier>EISSN: 1361-8423</identifier><identifier>DOI: 10.1016/j.media.2007.06.007</identifier><identifier>PMID: 17690003</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Algorithms ; Animals ; Brain Mapping - methods ; Histological Techniques ; Histology ; Image Enhancement - methods ; Image Processing, Computer-Assisted - methods ; Imaging, Three-Dimensional ; Mice ; Reconstruction ; Registration ; Regularization</subject><ispartof>Medical image analysis, 2008-02, Vol.12 (1), p.16-25</ispartof><rights>2007 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-debf39c0f34f7e4ecf90a62cd46b09ece1fbc225355fe6ced7aa6a412219be23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.media.2007.06.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17690003$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pitiot, Alain</creatorcontrib><creatorcontrib>Guimond, Alexandre</creatorcontrib><title>Geometrical regularization of displacement fields for histological image registration</title><title>Medical image analysis</title><addtitle>Med Image Anal</addtitle><description>This article tackles the registration of 2-D biomedical images (histological sections, autoradiographs, cryosections, etc.). Our goal is to adequately match anatomical features of interest without inducing biologically improbable tissue distortions. We observe that the large variety of registration applications – 3-D volume reconstruction, multimodal molecular mapping, etc. – induce a no less diverse set of requirements in terms of accuracy and robustness. In turn, these directly translate into regularization constraints on the deformation model, which should ideally be specifiable by the user. We propose an adaptive regularization approach where the rigidity constraints are informed by the registration application at hand and whose support is controlled by the geometry of the images to be registered. For each site of a sparse lattice over which a displacement field has been computed, our algorithm estimates, in a robust fashion, a rigid or affine transformation within a circular neighbourhood cut to fit the local geometry around the site. We investigate the behaviour of this technique and discuss its sensitivity to the rigidity parameter.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Brain Mapping - methods</subject><subject>Histological Techniques</subject><subject>Histology</subject><subject>Image Enhancement - methods</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Imaging, Three-Dimensional</subject><subject>Mice</subject><subject>Reconstruction</subject><subject>Registration</subject><subject>Regularization</subject><issn>1361-8415</issn><issn>1361-8423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkDtPwzAUhS0EoqXwC5BQJrYEv-I0AwNCUJAqsZTZcpzr4iqJi50gwa_HaSvYYDp-nO9c3YPQJcEZwUTcbLIWaqsyinGRYZFFOUJTwgRJ55yy458zySfoLIQNjg7O8SmakEKU8cam6HUBroXeW62axMN6aJS3X6q3rkucSWobto3S0ELXJ8ZCU4fEOJ-82dC7xq13mG3VGkY4Pvodeo5OjGoCXBx0hlaPD6v7p3T5sni-v1ummue8T2uoDCs1NoybAjhoU2IlqK65qHAJGoipNKU5y3MDQkNdKCUUJ5SSsgLKZuh6H7v17n2A0MvWBg1NozpwQ5AFpvM5L8t_jZRgJko-JrK9UXsXggcjtz6u5z8lwXJsXW7krnU5ti6xkFEidXWIH6r4-8scao6G270BYhkfFrwM2kIXN7IedC9rZ_8c8A34Ypaz</recordid><startdate>20080201</startdate><enddate>20080201</enddate><creator>Pitiot, Alain</creator><creator>Guimond, Alexandre</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20080201</creationdate><title>Geometrical regularization of displacement fields for histological image registration</title><author>Pitiot, Alain ; Guimond, Alexandre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-debf39c0f34f7e4ecf90a62cd46b09ece1fbc225355fe6ced7aa6a412219be23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Brain Mapping - methods</topic><topic>Histological Techniques</topic><topic>Histology</topic><topic>Image Enhancement - methods</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Imaging, Three-Dimensional</topic><topic>Mice</topic><topic>Reconstruction</topic><topic>Registration</topic><topic>Regularization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pitiot, Alain</creatorcontrib><creatorcontrib>Guimond, Alexandre</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Medical image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pitiot, Alain</au><au>Guimond, Alexandre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometrical regularization of displacement fields for histological image registration</atitle><jtitle>Medical image analysis</jtitle><addtitle>Med Image Anal</addtitle><date>2008-02-01</date><risdate>2008</risdate><volume>12</volume><issue>1</issue><spage>16</spage><epage>25</epage><pages>16-25</pages><issn>1361-8415</issn><eissn>1361-8423</eissn><abstract>This article tackles the registration of 2-D biomedical images (histological sections, autoradiographs, cryosections, etc.). Our goal is to adequately match anatomical features of interest without inducing biologically improbable tissue distortions. We observe that the large variety of registration applications – 3-D volume reconstruction, multimodal molecular mapping, etc. – induce a no less diverse set of requirements in terms of accuracy and robustness. In turn, these directly translate into regularization constraints on the deformation model, which should ideally be specifiable by the user. We propose an adaptive regularization approach where the rigidity constraints are informed by the registration application at hand and whose support is controlled by the geometry of the images to be registered. For each site of a sparse lattice over which a displacement field has been computed, our algorithm estimates, in a robust fashion, a rigid or affine transformation within a circular neighbourhood cut to fit the local geometry around the site. We investigate the behaviour of this technique and discuss its sensitivity to the rigidity parameter.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>17690003</pmid><doi>10.1016/j.media.2007.06.007</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1361-8415
ispartof Medical image analysis, 2008-02, Vol.12 (1), p.16-25
issn 1361-8415
1361-8423
language eng
recordid cdi_proquest_miscellaneous_70288499
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Algorithms
Animals
Brain Mapping - methods
Histological Techniques
Histology
Image Enhancement - methods
Image Processing, Computer-Assisted - methods
Imaging, Three-Dimensional
Mice
Reconstruction
Registration
Regularization
title Geometrical regularization of displacement fields for histological image registration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A51%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometrical%20regularization%20of%20displacement%20fields%20for%20histological%20image%20registration&rft.jtitle=Medical%20image%20analysis&rft.au=Pitiot,%20Alain&rft.date=2008-02-01&rft.volume=12&rft.issue=1&rft.spage=16&rft.epage=25&rft.pages=16-25&rft.issn=1361-8415&rft.eissn=1361-8423&rft_id=info:doi/10.1016/j.media.2007.06.007&rft_dat=%3Cproquest_cross%3E21036942%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21036942&rft_id=info:pmid/17690003&rft_els_id=S136184150700059X&rfr_iscdi=true