Progenitor cells and retinal angiogenesis
Nothing more dramatically captures the imagination of the visually impaired patient or the ophthalmologist treating them than the possibility of rebuilding a damaged retina or vasculature with "stem cells." Stem cells (SC) have been isolated from adult tissues and represent a pool of cells...
Gespeichert in:
Veröffentlicht in: | Angiogenesis (London) 2007-06, Vol.10 (2), p.89-101 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 101 |
---|---|
container_issue | 2 |
container_start_page | 89 |
container_title | Angiogenesis (London) |
container_volume | 10 |
creator | Friedlander, Martin Dorrell, Michael I Ritter, Matthew R Marchetti, Valentina Moreno, Stacey K El-Kalay, Mohammad Bird, Alan C Banin, Eyal Aguilar, Edith |
description | Nothing more dramatically captures the imagination of the visually impaired patient or the ophthalmologist treating them than the possibility of rebuilding a damaged retina or vasculature with "stem cells." Stem cells (SC) have been isolated from adult tissues and represent a pool of cells that may serve to facilitate rescue/repair of damaged tissue following injury or stress. We propose a new paradigm to "mature" otherwise immature neovasculature or, better yet, stabilize existing vasculature to hypoxic damage. This may be possible through the use of autologous bone marrow (BM) or cord blood derived hematopoietic SC that selectively target sites of neovascularization and gliosis where they provide vasculo- and neurotrophic effects. We have demonstrated that adult BM contains a population of endothelial and myeloid progenitor cells that can target activated astrocytes, a hallmark of many ocular diseases, and participate in normal developmental, or injury-induced, angiogenesis in the adult. Intravitreal injection of these cells from mice and humans can prevent retinal vascular degeneration ordinarily observed in mouse models of retinal degeneration; this vascular rescue correlates with functional neuronal rescue as well. The use of autologous adult BM derived SC grafts for the treatment of retinal vascular and degenerative diseases represents a novel conceptual approach that may make it possible to "mature" otherwise immature neovasculature, stabilize existing vasculature to hypoxic damage and/or rescue and protect retinal neurons from undergoing apoptosis. Such a therapeutic approach would obviate the need to employ destructive treatment modalities and would facilitate vascularization of ischemic and otherwise damaged retinal tissue. |
doi_str_mv | 10.1007/s10456-007-9070-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70285894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70285894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-d0a3bf249e187969a67ff20885a69bd79c5926e3e6f96eb0a7bcbc2cc8ccfa923</originalsourceid><addsrcrecordid>eNqFkUtLAzEUhYMotlZ_gBspCoKL6M1j8lhK8QUFXeg6ZDJJmTKdqcnMwn9vhhYEQVzlkPvde8_lIHRO4JYAyLtEgBcCZ4k1SMD8AE1JIRmWFPQhmoIWGgstYYJOUloD5A_Fj9GESCapKsgU3bzFbuXbuu_i3PmmSXPbVvPo-7q1Tdareiz7VKdTdBRsk_zZ_p2hj8eH98UzXr4-vSzul9gxgB5XYFkZKNeeKJn3WyFDoKBUYYUuK6ldoanwzIughS_BytKVjjqnnAtWUzZD17u529h9Dj71ZlOn0ZptfTckIyE7V5r_C1LgiuRdGbz6Ba67Ieb7MiMEF0IrPVKXf1KEcEl5ARkiO8jFLqXog9nGemPjlyFgxkzMLhMzyjETM_q82A8eyo2vfjr2IbBvesWE_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>211472450</pqid></control><display><type>article</type><title>Progenitor cells and retinal angiogenesis</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Friedlander, Martin ; Dorrell, Michael I ; Ritter, Matthew R ; Marchetti, Valentina ; Moreno, Stacey K ; El-Kalay, Mohammad ; Bird, Alan C ; Banin, Eyal ; Aguilar, Edith</creator><creatorcontrib>Friedlander, Martin ; Dorrell, Michael I ; Ritter, Matthew R ; Marchetti, Valentina ; Moreno, Stacey K ; El-Kalay, Mohammad ; Bird, Alan C ; Banin, Eyal ; Aguilar, Edith</creatorcontrib><description>Nothing more dramatically captures the imagination of the visually impaired patient or the ophthalmologist treating them than the possibility of rebuilding a damaged retina or vasculature with "stem cells." Stem cells (SC) have been isolated from adult tissues and represent a pool of cells that may serve to facilitate rescue/repair of damaged tissue following injury or stress. We propose a new paradigm to "mature" otherwise immature neovasculature or, better yet, stabilize existing vasculature to hypoxic damage. This may be possible through the use of autologous bone marrow (BM) or cord blood derived hematopoietic SC that selectively target sites of neovascularization and gliosis where they provide vasculo- and neurotrophic effects. We have demonstrated that adult BM contains a population of endothelial and myeloid progenitor cells that can target activated astrocytes, a hallmark of many ocular diseases, and participate in normal developmental, or injury-induced, angiogenesis in the adult. Intravitreal injection of these cells from mice and humans can prevent retinal vascular degeneration ordinarily observed in mouse models of retinal degeneration; this vascular rescue correlates with functional neuronal rescue as well. The use of autologous adult BM derived SC grafts for the treatment of retinal vascular and degenerative diseases represents a novel conceptual approach that may make it possible to "mature" otherwise immature neovasculature, stabilize existing vasculature to hypoxic damage and/or rescue and protect retinal neurons from undergoing apoptosis. Such a therapeutic approach would obviate the need to employ destructive treatment modalities and would facilitate vascularization of ischemic and otherwise damaged retinal tissue.</description><identifier>ISSN: 0969-6970</identifier><identifier>EISSN: 1573-7209</identifier><identifier>DOI: 10.1007/s10456-007-9070-4</identifier><identifier>PMID: 17372851</identifier><identifier>CODEN: AGIOFT</identifier><language>eng</language><publisher>Germany: Springer Nature B.V</publisher><subject>Adult ; Angiogenesis ; Animal models ; Apoptosis ; Astrocytes ; Autografts ; Bone marrow ; Bone Marrow Cells - physiology ; Cord blood ; Cord Blood Stem Cell Transplantation ; Damage ; Degeneration ; Degenerative diseases ; Endothelium, Vascular - cytology ; Eye diseases ; Gliosis ; Hematopoietic Stem Cell Transplantation ; Hemopoiesis ; Humans ; Hypoxia ; Ischemia ; Neovascularization, Physiologic ; Neural stem cells ; Progenitor cells ; Retina ; Retinal degeneration ; Retinal Diseases - physiopathology ; Retinal Diseases - therapy ; Retinal Vessels - physiology ; Retinal Vessels - physiopathology ; Safety ; Stem Cell Transplantation ; Stem cells ; Tissues ; Vascularization</subject><ispartof>Angiogenesis (London), 2007-06, Vol.10 (2), p.89-101</ispartof><rights>Springer Science + Business Media B.V. 2007</rights><rights>Springer Science + Business Media B.V. 2007.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-d0a3bf249e187969a67ff20885a69bd79c5926e3e6f96eb0a7bcbc2cc8ccfa923</citedby><cites>FETCH-LOGICAL-c300t-d0a3bf249e187969a67ff20885a69bd79c5926e3e6f96eb0a7bcbc2cc8ccfa923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17372851$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Friedlander, Martin</creatorcontrib><creatorcontrib>Dorrell, Michael I</creatorcontrib><creatorcontrib>Ritter, Matthew R</creatorcontrib><creatorcontrib>Marchetti, Valentina</creatorcontrib><creatorcontrib>Moreno, Stacey K</creatorcontrib><creatorcontrib>El-Kalay, Mohammad</creatorcontrib><creatorcontrib>Bird, Alan C</creatorcontrib><creatorcontrib>Banin, Eyal</creatorcontrib><creatorcontrib>Aguilar, Edith</creatorcontrib><title>Progenitor cells and retinal angiogenesis</title><title>Angiogenesis (London)</title><addtitle>Angiogenesis</addtitle><description>Nothing more dramatically captures the imagination of the visually impaired patient or the ophthalmologist treating them than the possibility of rebuilding a damaged retina or vasculature with "stem cells." Stem cells (SC) have been isolated from adult tissues and represent a pool of cells that may serve to facilitate rescue/repair of damaged tissue following injury or stress. We propose a new paradigm to "mature" otherwise immature neovasculature or, better yet, stabilize existing vasculature to hypoxic damage. This may be possible through the use of autologous bone marrow (BM) or cord blood derived hematopoietic SC that selectively target sites of neovascularization and gliosis where they provide vasculo- and neurotrophic effects. We have demonstrated that adult BM contains a population of endothelial and myeloid progenitor cells that can target activated astrocytes, a hallmark of many ocular diseases, and participate in normal developmental, or injury-induced, angiogenesis in the adult. Intravitreal injection of these cells from mice and humans can prevent retinal vascular degeneration ordinarily observed in mouse models of retinal degeneration; this vascular rescue correlates with functional neuronal rescue as well. The use of autologous adult BM derived SC grafts for the treatment of retinal vascular and degenerative diseases represents a novel conceptual approach that may make it possible to "mature" otherwise immature neovasculature, stabilize existing vasculature to hypoxic damage and/or rescue and protect retinal neurons from undergoing apoptosis. Such a therapeutic approach would obviate the need to employ destructive treatment modalities and would facilitate vascularization of ischemic and otherwise damaged retinal tissue.</description><subject>Adult</subject><subject>Angiogenesis</subject><subject>Animal models</subject><subject>Apoptosis</subject><subject>Astrocytes</subject><subject>Autografts</subject><subject>Bone marrow</subject><subject>Bone Marrow Cells - physiology</subject><subject>Cord blood</subject><subject>Cord Blood Stem Cell Transplantation</subject><subject>Damage</subject><subject>Degeneration</subject><subject>Degenerative diseases</subject><subject>Endothelium, Vascular - cytology</subject><subject>Eye diseases</subject><subject>Gliosis</subject><subject>Hematopoietic Stem Cell Transplantation</subject><subject>Hemopoiesis</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>Ischemia</subject><subject>Neovascularization, Physiologic</subject><subject>Neural stem cells</subject><subject>Progenitor cells</subject><subject>Retina</subject><subject>Retinal degeneration</subject><subject>Retinal Diseases - physiopathology</subject><subject>Retinal Diseases - therapy</subject><subject>Retinal Vessels - physiology</subject><subject>Retinal Vessels - physiopathology</subject><subject>Safety</subject><subject>Stem Cell Transplantation</subject><subject>Stem cells</subject><subject>Tissues</subject><subject>Vascularization</subject><issn>0969-6970</issn><issn>1573-7209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNqFkUtLAzEUhYMotlZ_gBspCoKL6M1j8lhK8QUFXeg6ZDJJmTKdqcnMwn9vhhYEQVzlkPvde8_lIHRO4JYAyLtEgBcCZ4k1SMD8AE1JIRmWFPQhmoIWGgstYYJOUloD5A_Fj9GESCapKsgU3bzFbuXbuu_i3PmmSXPbVvPo-7q1Tdareiz7VKdTdBRsk_zZ_p2hj8eH98UzXr4-vSzul9gxgB5XYFkZKNeeKJn3WyFDoKBUYYUuK6ldoanwzIughS_BytKVjjqnnAtWUzZD17u529h9Dj71ZlOn0ZptfTckIyE7V5r_C1LgiuRdGbz6Ba67Ieb7MiMEF0IrPVKXf1KEcEl5ARkiO8jFLqXog9nGemPjlyFgxkzMLhMzyjETM_q82A8eyo2vfjr2IbBvesWE_Q</recordid><startdate>200706</startdate><enddate>200706</enddate><creator>Friedlander, Martin</creator><creator>Dorrell, Michael I</creator><creator>Ritter, Matthew R</creator><creator>Marchetti, Valentina</creator><creator>Moreno, Stacey K</creator><creator>El-Kalay, Mohammad</creator><creator>Bird, Alan C</creator><creator>Banin, Eyal</creator><creator>Aguilar, Edith</creator><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>200706</creationdate><title>Progenitor cells and retinal angiogenesis</title><author>Friedlander, Martin ; Dorrell, Michael I ; Ritter, Matthew R ; Marchetti, Valentina ; Moreno, Stacey K ; El-Kalay, Mohammad ; Bird, Alan C ; Banin, Eyal ; Aguilar, Edith</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-d0a3bf249e187969a67ff20885a69bd79c5926e3e6f96eb0a7bcbc2cc8ccfa923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Adult</topic><topic>Angiogenesis</topic><topic>Animal models</topic><topic>Apoptosis</topic><topic>Astrocytes</topic><topic>Autografts</topic><topic>Bone marrow</topic><topic>Bone Marrow Cells - physiology</topic><topic>Cord blood</topic><topic>Cord Blood Stem Cell Transplantation</topic><topic>Damage</topic><topic>Degeneration</topic><topic>Degenerative diseases</topic><topic>Endothelium, Vascular - cytology</topic><topic>Eye diseases</topic><topic>Gliosis</topic><topic>Hematopoietic Stem Cell Transplantation</topic><topic>Hemopoiesis</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>Ischemia</topic><topic>Neovascularization, Physiologic</topic><topic>Neural stem cells</topic><topic>Progenitor cells</topic><topic>Retina</topic><topic>Retinal degeneration</topic><topic>Retinal Diseases - physiopathology</topic><topic>Retinal Diseases - therapy</topic><topic>Retinal Vessels - physiology</topic><topic>Retinal Vessels - physiopathology</topic><topic>Safety</topic><topic>Stem Cell Transplantation</topic><topic>Stem cells</topic><topic>Tissues</topic><topic>Vascularization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Friedlander, Martin</creatorcontrib><creatorcontrib>Dorrell, Michael I</creatorcontrib><creatorcontrib>Ritter, Matthew R</creatorcontrib><creatorcontrib>Marchetti, Valentina</creatorcontrib><creatorcontrib>Moreno, Stacey K</creatorcontrib><creatorcontrib>El-Kalay, Mohammad</creatorcontrib><creatorcontrib>Bird, Alan C</creatorcontrib><creatorcontrib>Banin, Eyal</creatorcontrib><creatorcontrib>Aguilar, Edith</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Angiogenesis (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Friedlander, Martin</au><au>Dorrell, Michael I</au><au>Ritter, Matthew R</au><au>Marchetti, Valentina</au><au>Moreno, Stacey K</au><au>El-Kalay, Mohammad</au><au>Bird, Alan C</au><au>Banin, Eyal</au><au>Aguilar, Edith</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Progenitor cells and retinal angiogenesis</atitle><jtitle>Angiogenesis (London)</jtitle><addtitle>Angiogenesis</addtitle><date>2007-06</date><risdate>2007</risdate><volume>10</volume><issue>2</issue><spage>89</spage><epage>101</epage><pages>89-101</pages><issn>0969-6970</issn><eissn>1573-7209</eissn><coden>AGIOFT</coden><abstract>Nothing more dramatically captures the imagination of the visually impaired patient or the ophthalmologist treating them than the possibility of rebuilding a damaged retina or vasculature with "stem cells." Stem cells (SC) have been isolated from adult tissues and represent a pool of cells that may serve to facilitate rescue/repair of damaged tissue following injury or stress. We propose a new paradigm to "mature" otherwise immature neovasculature or, better yet, stabilize existing vasculature to hypoxic damage. This may be possible through the use of autologous bone marrow (BM) or cord blood derived hematopoietic SC that selectively target sites of neovascularization and gliosis where they provide vasculo- and neurotrophic effects. We have demonstrated that adult BM contains a population of endothelial and myeloid progenitor cells that can target activated astrocytes, a hallmark of many ocular diseases, and participate in normal developmental, or injury-induced, angiogenesis in the adult. Intravitreal injection of these cells from mice and humans can prevent retinal vascular degeneration ordinarily observed in mouse models of retinal degeneration; this vascular rescue correlates with functional neuronal rescue as well. The use of autologous adult BM derived SC grafts for the treatment of retinal vascular and degenerative diseases represents a novel conceptual approach that may make it possible to "mature" otherwise immature neovasculature, stabilize existing vasculature to hypoxic damage and/or rescue and protect retinal neurons from undergoing apoptosis. Such a therapeutic approach would obviate the need to employ destructive treatment modalities and would facilitate vascularization of ischemic and otherwise damaged retinal tissue.</abstract><cop>Germany</cop><pub>Springer Nature B.V</pub><pmid>17372851</pmid><doi>10.1007/s10456-007-9070-4</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0969-6970 |
ispartof | Angiogenesis (London), 2007-06, Vol.10 (2), p.89-101 |
issn | 0969-6970 1573-7209 |
language | eng |
recordid | cdi_proquest_miscellaneous_70285894 |
source | MEDLINE; SpringerNature Journals |
subjects | Adult Angiogenesis Animal models Apoptosis Astrocytes Autografts Bone marrow Bone Marrow Cells - physiology Cord blood Cord Blood Stem Cell Transplantation Damage Degeneration Degenerative diseases Endothelium, Vascular - cytology Eye diseases Gliosis Hematopoietic Stem Cell Transplantation Hemopoiesis Humans Hypoxia Ischemia Neovascularization, Physiologic Neural stem cells Progenitor cells Retina Retinal degeneration Retinal Diseases - physiopathology Retinal Diseases - therapy Retinal Vessels - physiology Retinal Vessels - physiopathology Safety Stem Cell Transplantation Stem cells Tissues Vascularization |
title | Progenitor cells and retinal angiogenesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A41%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Progenitor%20cells%20and%20retinal%20angiogenesis&rft.jtitle=Angiogenesis%20(London)&rft.au=Friedlander,%20Martin&rft.date=2007-06&rft.volume=10&rft.issue=2&rft.spage=89&rft.epage=101&rft.pages=89-101&rft.issn=0969-6970&rft.eissn=1573-7209&rft.coden=AGIOFT&rft_id=info:doi/10.1007/s10456-007-9070-4&rft_dat=%3Cproquest_cross%3E70285894%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=211472450&rft_id=info:pmid/17372851&rfr_iscdi=true |