Progenitor cells and retinal angiogenesis

Nothing more dramatically captures the imagination of the visually impaired patient or the ophthalmologist treating them than the possibility of rebuilding a damaged retina or vasculature with "stem cells." Stem cells (SC) have been isolated from adult tissues and represent a pool of cells...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angiogenesis (London) 2007-06, Vol.10 (2), p.89-101
Hauptverfasser: Friedlander, Martin, Dorrell, Michael I, Ritter, Matthew R, Marchetti, Valentina, Moreno, Stacey K, El-Kalay, Mohammad, Bird, Alan C, Banin, Eyal, Aguilar, Edith
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 101
container_issue 2
container_start_page 89
container_title Angiogenesis (London)
container_volume 10
creator Friedlander, Martin
Dorrell, Michael I
Ritter, Matthew R
Marchetti, Valentina
Moreno, Stacey K
El-Kalay, Mohammad
Bird, Alan C
Banin, Eyal
Aguilar, Edith
description Nothing more dramatically captures the imagination of the visually impaired patient or the ophthalmologist treating them than the possibility of rebuilding a damaged retina or vasculature with "stem cells." Stem cells (SC) have been isolated from adult tissues and represent a pool of cells that may serve to facilitate rescue/repair of damaged tissue following injury or stress. We propose a new paradigm to "mature" otherwise immature neovasculature or, better yet, stabilize existing vasculature to hypoxic damage. This may be possible through the use of autologous bone marrow (BM) or cord blood derived hematopoietic SC that selectively target sites of neovascularization and gliosis where they provide vasculo- and neurotrophic effects. We have demonstrated that adult BM contains a population of endothelial and myeloid progenitor cells that can target activated astrocytes, a hallmark of many ocular diseases, and participate in normal developmental, or injury-induced, angiogenesis in the adult. Intravitreal injection of these cells from mice and humans can prevent retinal vascular degeneration ordinarily observed in mouse models of retinal degeneration; this vascular rescue correlates with functional neuronal rescue as well. The use of autologous adult BM derived SC grafts for the treatment of retinal vascular and degenerative diseases represents a novel conceptual approach that may make it possible to "mature" otherwise immature neovasculature, stabilize existing vasculature to hypoxic damage and/or rescue and protect retinal neurons from undergoing apoptosis. Such a therapeutic approach would obviate the need to employ destructive treatment modalities and would facilitate vascularization of ischemic and otherwise damaged retinal tissue.
doi_str_mv 10.1007/s10456-007-9070-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70285894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70285894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-d0a3bf249e187969a67ff20885a69bd79c5926e3e6f96eb0a7bcbc2cc8ccfa923</originalsourceid><addsrcrecordid>eNqFkUtLAzEUhYMotlZ_gBspCoKL6M1j8lhK8QUFXeg6ZDJJmTKdqcnMwn9vhhYEQVzlkPvde8_lIHRO4JYAyLtEgBcCZ4k1SMD8AE1JIRmWFPQhmoIWGgstYYJOUloD5A_Fj9GESCapKsgU3bzFbuXbuu_i3PmmSXPbVvPo-7q1Tdareiz7VKdTdBRsk_zZ_p2hj8eH98UzXr4-vSzul9gxgB5XYFkZKNeeKJn3WyFDoKBUYYUuK6ldoanwzIughS_BytKVjjqnnAtWUzZD17u529h9Dj71ZlOn0ZptfTckIyE7V5r_C1LgiuRdGbz6Ba67Ieb7MiMEF0IrPVKXf1KEcEl5ARkiO8jFLqXog9nGemPjlyFgxkzMLhMzyjETM_q82A8eyo2vfjr2IbBvesWE_Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>211472450</pqid></control><display><type>article</type><title>Progenitor cells and retinal angiogenesis</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Friedlander, Martin ; Dorrell, Michael I ; Ritter, Matthew R ; Marchetti, Valentina ; Moreno, Stacey K ; El-Kalay, Mohammad ; Bird, Alan C ; Banin, Eyal ; Aguilar, Edith</creator><creatorcontrib>Friedlander, Martin ; Dorrell, Michael I ; Ritter, Matthew R ; Marchetti, Valentina ; Moreno, Stacey K ; El-Kalay, Mohammad ; Bird, Alan C ; Banin, Eyal ; Aguilar, Edith</creatorcontrib><description>Nothing more dramatically captures the imagination of the visually impaired patient or the ophthalmologist treating them than the possibility of rebuilding a damaged retina or vasculature with "stem cells." Stem cells (SC) have been isolated from adult tissues and represent a pool of cells that may serve to facilitate rescue/repair of damaged tissue following injury or stress. We propose a new paradigm to "mature" otherwise immature neovasculature or, better yet, stabilize existing vasculature to hypoxic damage. This may be possible through the use of autologous bone marrow (BM) or cord blood derived hematopoietic SC that selectively target sites of neovascularization and gliosis where they provide vasculo- and neurotrophic effects. We have demonstrated that adult BM contains a population of endothelial and myeloid progenitor cells that can target activated astrocytes, a hallmark of many ocular diseases, and participate in normal developmental, or injury-induced, angiogenesis in the adult. Intravitreal injection of these cells from mice and humans can prevent retinal vascular degeneration ordinarily observed in mouse models of retinal degeneration; this vascular rescue correlates with functional neuronal rescue as well. The use of autologous adult BM derived SC grafts for the treatment of retinal vascular and degenerative diseases represents a novel conceptual approach that may make it possible to "mature" otherwise immature neovasculature, stabilize existing vasculature to hypoxic damage and/or rescue and protect retinal neurons from undergoing apoptosis. Such a therapeutic approach would obviate the need to employ destructive treatment modalities and would facilitate vascularization of ischemic and otherwise damaged retinal tissue.</description><identifier>ISSN: 0969-6970</identifier><identifier>EISSN: 1573-7209</identifier><identifier>DOI: 10.1007/s10456-007-9070-4</identifier><identifier>PMID: 17372851</identifier><identifier>CODEN: AGIOFT</identifier><language>eng</language><publisher>Germany: Springer Nature B.V</publisher><subject>Adult ; Angiogenesis ; Animal models ; Apoptosis ; Astrocytes ; Autografts ; Bone marrow ; Bone Marrow Cells - physiology ; Cord blood ; Cord Blood Stem Cell Transplantation ; Damage ; Degeneration ; Degenerative diseases ; Endothelium, Vascular - cytology ; Eye diseases ; Gliosis ; Hematopoietic Stem Cell Transplantation ; Hemopoiesis ; Humans ; Hypoxia ; Ischemia ; Neovascularization, Physiologic ; Neural stem cells ; Progenitor cells ; Retina ; Retinal degeneration ; Retinal Diseases - physiopathology ; Retinal Diseases - therapy ; Retinal Vessels - physiology ; Retinal Vessels - physiopathology ; Safety ; Stem Cell Transplantation ; Stem cells ; Tissues ; Vascularization</subject><ispartof>Angiogenesis (London), 2007-06, Vol.10 (2), p.89-101</ispartof><rights>Springer Science + Business Media B.V. 2007</rights><rights>Springer Science + Business Media B.V. 2007.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c300t-d0a3bf249e187969a67ff20885a69bd79c5926e3e6f96eb0a7bcbc2cc8ccfa923</citedby><cites>FETCH-LOGICAL-c300t-d0a3bf249e187969a67ff20885a69bd79c5926e3e6f96eb0a7bcbc2cc8ccfa923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17372851$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Friedlander, Martin</creatorcontrib><creatorcontrib>Dorrell, Michael I</creatorcontrib><creatorcontrib>Ritter, Matthew R</creatorcontrib><creatorcontrib>Marchetti, Valentina</creatorcontrib><creatorcontrib>Moreno, Stacey K</creatorcontrib><creatorcontrib>El-Kalay, Mohammad</creatorcontrib><creatorcontrib>Bird, Alan C</creatorcontrib><creatorcontrib>Banin, Eyal</creatorcontrib><creatorcontrib>Aguilar, Edith</creatorcontrib><title>Progenitor cells and retinal angiogenesis</title><title>Angiogenesis (London)</title><addtitle>Angiogenesis</addtitle><description>Nothing more dramatically captures the imagination of the visually impaired patient or the ophthalmologist treating them than the possibility of rebuilding a damaged retina or vasculature with "stem cells." Stem cells (SC) have been isolated from adult tissues and represent a pool of cells that may serve to facilitate rescue/repair of damaged tissue following injury or stress. We propose a new paradigm to "mature" otherwise immature neovasculature or, better yet, stabilize existing vasculature to hypoxic damage. This may be possible through the use of autologous bone marrow (BM) or cord blood derived hematopoietic SC that selectively target sites of neovascularization and gliosis where they provide vasculo- and neurotrophic effects. We have demonstrated that adult BM contains a population of endothelial and myeloid progenitor cells that can target activated astrocytes, a hallmark of many ocular diseases, and participate in normal developmental, or injury-induced, angiogenesis in the adult. Intravitreal injection of these cells from mice and humans can prevent retinal vascular degeneration ordinarily observed in mouse models of retinal degeneration; this vascular rescue correlates with functional neuronal rescue as well. The use of autologous adult BM derived SC grafts for the treatment of retinal vascular and degenerative diseases represents a novel conceptual approach that may make it possible to "mature" otherwise immature neovasculature, stabilize existing vasculature to hypoxic damage and/or rescue and protect retinal neurons from undergoing apoptosis. Such a therapeutic approach would obviate the need to employ destructive treatment modalities and would facilitate vascularization of ischemic and otherwise damaged retinal tissue.</description><subject>Adult</subject><subject>Angiogenesis</subject><subject>Animal models</subject><subject>Apoptosis</subject><subject>Astrocytes</subject><subject>Autografts</subject><subject>Bone marrow</subject><subject>Bone Marrow Cells - physiology</subject><subject>Cord blood</subject><subject>Cord Blood Stem Cell Transplantation</subject><subject>Damage</subject><subject>Degeneration</subject><subject>Degenerative diseases</subject><subject>Endothelium, Vascular - cytology</subject><subject>Eye diseases</subject><subject>Gliosis</subject><subject>Hematopoietic Stem Cell Transplantation</subject><subject>Hemopoiesis</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>Ischemia</subject><subject>Neovascularization, Physiologic</subject><subject>Neural stem cells</subject><subject>Progenitor cells</subject><subject>Retina</subject><subject>Retinal degeneration</subject><subject>Retinal Diseases - physiopathology</subject><subject>Retinal Diseases - therapy</subject><subject>Retinal Vessels - physiology</subject><subject>Retinal Vessels - physiopathology</subject><subject>Safety</subject><subject>Stem Cell Transplantation</subject><subject>Stem cells</subject><subject>Tissues</subject><subject>Vascularization</subject><issn>0969-6970</issn><issn>1573-7209</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNqFkUtLAzEUhYMotlZ_gBspCoKL6M1j8lhK8QUFXeg6ZDJJmTKdqcnMwn9vhhYEQVzlkPvde8_lIHRO4JYAyLtEgBcCZ4k1SMD8AE1JIRmWFPQhmoIWGgstYYJOUloD5A_Fj9GESCapKsgU3bzFbuXbuu_i3PmmSXPbVvPo-7q1Tdareiz7VKdTdBRsk_zZ_p2hj8eH98UzXr4-vSzul9gxgB5XYFkZKNeeKJn3WyFDoKBUYYUuK6ldoanwzIughS_BytKVjjqnnAtWUzZD17u529h9Dj71ZlOn0ZptfTckIyE7V5r_C1LgiuRdGbz6Ba67Ieb7MiMEF0IrPVKXf1KEcEl5ARkiO8jFLqXog9nGemPjlyFgxkzMLhMzyjETM_q82A8eyo2vfjr2IbBvesWE_Q</recordid><startdate>200706</startdate><enddate>200706</enddate><creator>Friedlander, Martin</creator><creator>Dorrell, Michael I</creator><creator>Ritter, Matthew R</creator><creator>Marchetti, Valentina</creator><creator>Moreno, Stacey K</creator><creator>El-Kalay, Mohammad</creator><creator>Bird, Alan C</creator><creator>Banin, Eyal</creator><creator>Aguilar, Edith</creator><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>200706</creationdate><title>Progenitor cells and retinal angiogenesis</title><author>Friedlander, Martin ; Dorrell, Michael I ; Ritter, Matthew R ; Marchetti, Valentina ; Moreno, Stacey K ; El-Kalay, Mohammad ; Bird, Alan C ; Banin, Eyal ; Aguilar, Edith</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-d0a3bf249e187969a67ff20885a69bd79c5926e3e6f96eb0a7bcbc2cc8ccfa923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Adult</topic><topic>Angiogenesis</topic><topic>Animal models</topic><topic>Apoptosis</topic><topic>Astrocytes</topic><topic>Autografts</topic><topic>Bone marrow</topic><topic>Bone Marrow Cells - physiology</topic><topic>Cord blood</topic><topic>Cord Blood Stem Cell Transplantation</topic><topic>Damage</topic><topic>Degeneration</topic><topic>Degenerative diseases</topic><topic>Endothelium, Vascular - cytology</topic><topic>Eye diseases</topic><topic>Gliosis</topic><topic>Hematopoietic Stem Cell Transplantation</topic><topic>Hemopoiesis</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>Ischemia</topic><topic>Neovascularization, Physiologic</topic><topic>Neural stem cells</topic><topic>Progenitor cells</topic><topic>Retina</topic><topic>Retinal degeneration</topic><topic>Retinal Diseases - physiopathology</topic><topic>Retinal Diseases - therapy</topic><topic>Retinal Vessels - physiology</topic><topic>Retinal Vessels - physiopathology</topic><topic>Safety</topic><topic>Stem Cell Transplantation</topic><topic>Stem cells</topic><topic>Tissues</topic><topic>Vascularization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Friedlander, Martin</creatorcontrib><creatorcontrib>Dorrell, Michael I</creatorcontrib><creatorcontrib>Ritter, Matthew R</creatorcontrib><creatorcontrib>Marchetti, Valentina</creatorcontrib><creatorcontrib>Moreno, Stacey K</creatorcontrib><creatorcontrib>El-Kalay, Mohammad</creatorcontrib><creatorcontrib>Bird, Alan C</creatorcontrib><creatorcontrib>Banin, Eyal</creatorcontrib><creatorcontrib>Aguilar, Edith</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Angiogenesis (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Friedlander, Martin</au><au>Dorrell, Michael I</au><au>Ritter, Matthew R</au><au>Marchetti, Valentina</au><au>Moreno, Stacey K</au><au>El-Kalay, Mohammad</au><au>Bird, Alan C</au><au>Banin, Eyal</au><au>Aguilar, Edith</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Progenitor cells and retinal angiogenesis</atitle><jtitle>Angiogenesis (London)</jtitle><addtitle>Angiogenesis</addtitle><date>2007-06</date><risdate>2007</risdate><volume>10</volume><issue>2</issue><spage>89</spage><epage>101</epage><pages>89-101</pages><issn>0969-6970</issn><eissn>1573-7209</eissn><coden>AGIOFT</coden><abstract>Nothing more dramatically captures the imagination of the visually impaired patient or the ophthalmologist treating them than the possibility of rebuilding a damaged retina or vasculature with "stem cells." Stem cells (SC) have been isolated from adult tissues and represent a pool of cells that may serve to facilitate rescue/repair of damaged tissue following injury or stress. We propose a new paradigm to "mature" otherwise immature neovasculature or, better yet, stabilize existing vasculature to hypoxic damage. This may be possible through the use of autologous bone marrow (BM) or cord blood derived hematopoietic SC that selectively target sites of neovascularization and gliosis where they provide vasculo- and neurotrophic effects. We have demonstrated that adult BM contains a population of endothelial and myeloid progenitor cells that can target activated astrocytes, a hallmark of many ocular diseases, and participate in normal developmental, or injury-induced, angiogenesis in the adult. Intravitreal injection of these cells from mice and humans can prevent retinal vascular degeneration ordinarily observed in mouse models of retinal degeneration; this vascular rescue correlates with functional neuronal rescue as well. The use of autologous adult BM derived SC grafts for the treatment of retinal vascular and degenerative diseases represents a novel conceptual approach that may make it possible to "mature" otherwise immature neovasculature, stabilize existing vasculature to hypoxic damage and/or rescue and protect retinal neurons from undergoing apoptosis. Such a therapeutic approach would obviate the need to employ destructive treatment modalities and would facilitate vascularization of ischemic and otherwise damaged retinal tissue.</abstract><cop>Germany</cop><pub>Springer Nature B.V</pub><pmid>17372851</pmid><doi>10.1007/s10456-007-9070-4</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0969-6970
ispartof Angiogenesis (London), 2007-06, Vol.10 (2), p.89-101
issn 0969-6970
1573-7209
language eng
recordid cdi_proquest_miscellaneous_70285894
source MEDLINE; SpringerNature Journals
subjects Adult
Angiogenesis
Animal models
Apoptosis
Astrocytes
Autografts
Bone marrow
Bone Marrow Cells - physiology
Cord blood
Cord Blood Stem Cell Transplantation
Damage
Degeneration
Degenerative diseases
Endothelium, Vascular - cytology
Eye diseases
Gliosis
Hematopoietic Stem Cell Transplantation
Hemopoiesis
Humans
Hypoxia
Ischemia
Neovascularization, Physiologic
Neural stem cells
Progenitor cells
Retina
Retinal degeneration
Retinal Diseases - physiopathology
Retinal Diseases - therapy
Retinal Vessels - physiology
Retinal Vessels - physiopathology
Safety
Stem Cell Transplantation
Stem cells
Tissues
Vascularization
title Progenitor cells and retinal angiogenesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A41%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Progenitor%20cells%20and%20retinal%20angiogenesis&rft.jtitle=Angiogenesis%20(London)&rft.au=Friedlander,%20Martin&rft.date=2007-06&rft.volume=10&rft.issue=2&rft.spage=89&rft.epage=101&rft.pages=89-101&rft.issn=0969-6970&rft.eissn=1573-7209&rft.coden=AGIOFT&rft_id=info:doi/10.1007/s10456-007-9070-4&rft_dat=%3Cproquest_cross%3E70285894%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=211472450&rft_id=info:pmid/17372851&rfr_iscdi=true