Poly(HEMA) hydrogels with controlled pore architecture for tissue regeneration applications

The technique for fabrication of soft porous hydrogels, in which both the size and the orientation of inner pores can be controlled, was developed. Three-dimensional hydrophilic gels based on poly[2-hydroxyethyl methacrylate] are designed as scaffolds for regeneration of soft tissues, e.g., nerve ti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in medicine 2008-02, Vol.19 (2), p.615-621
Hauptverfasser: Studenovska, Hana, louf, Miroslav, Rypacek, Frantisek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 621
container_issue 2
container_start_page 615
container_title Journal of materials science. Materials in medicine
container_volume 19
creator Studenovska, Hana
louf, Miroslav
Rypacek, Frantisek
description The technique for fabrication of soft porous hydrogels, in which both the size and the orientation of inner pores can be controlled, was developed. Three-dimensional hydrophilic gels based on poly[2-hydroxyethyl methacrylate] are designed as scaffolds for regeneration of soft tissues, e.g., nerve tissue. Anisotropic macropores of the size ranging from 10 to 50 μm were formed (1) by using a porogen-leaching method with a solid organic porogen, (2) by phase-separation during gelation in solvent-nonsolvent mixture, or (3) by combination of solid porogen elimination and phase-separation. As a porogen, poly( l -lactide) fibers were applied and consequently washed away under mild conditions to obtain desired spatial orientation of pores. Highly water-swollen polymer gels were characterized with high pressure (low vacuum) scanning electron microscopy (AquaSEM). The morphology of voids remaining after removing the solid PLLA porogen (the macropores) was clearly shown.
doi_str_mv 10.1007/s10856-007-3217-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70274015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1898141701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c431t-23ac15db3828f989ef8c104cee6f1744ea9a055bd25ef475d21b62f5d0ca3b343</originalsourceid><addsrcrecordid>eNqFkU9r3DAQxUVpaDZpP0AvxfRQ0oPbGf2xrGMISRNIaQ_tqQchy-NdB6_lSjZlv3203YVAoQQEeoN-7w3iMfYW4RMC6M8JoVZVmWUpOOoSXrAVKi1KWYv6JVuBUbqUSsApO0vpAQCkUeoVO0VdoTFKrNiv72HYXdxef738WGx2bQxrGlLxp583hQ_jHMMwUFtMIVLhot_0M_l5yUMXYjH3KS1URFrTSNHNfRgLN01D7__q9JqddG5I9OZ4n7OfN9c_rm7L-29f7q4u70svBc4lF86jahtR87oztaGu9gjSE1UdainJGQdKNS1X1EmtWo5NxTvVgneiEVKcsw-H3CmG3wul2W775GkY3EhhSVYD1xJQPQsKDkprYZ4FOVTA88ng-3_Ah7DEMf_Wco5ooBI6Q3iAfAwpRersFPutizuLYPdF2kORdi_3RVrInnfH4KXZUvvkODaXAX4AUn4a1xSfNv8_9RGDcKiM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>221190637</pqid></control><display><type>article</type><title>Poly(HEMA) hydrogels with controlled pore architecture for tissue regeneration applications</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Studenovska, Hana ; louf, Miroslav ; Rypacek, Frantisek</creator><creatorcontrib>Studenovska, Hana ; louf, Miroslav ; Rypacek, Frantisek</creatorcontrib><description>The technique for fabrication of soft porous hydrogels, in which both the size and the orientation of inner pores can be controlled, was developed. Three-dimensional hydrophilic gels based on poly[2-hydroxyethyl methacrylate] are designed as scaffolds for regeneration of soft tissues, e.g., nerve tissue. Anisotropic macropores of the size ranging from 10 to 50 μm were formed (1) by using a porogen-leaching method with a solid organic porogen, (2) by phase-separation during gelation in solvent-nonsolvent mixture, or (3) by combination of solid porogen elimination and phase-separation. As a porogen, poly( l -lactide) fibers were applied and consequently washed away under mild conditions to obtain desired spatial orientation of pores. Highly water-swollen polymer gels were characterized with high pressure (low vacuum) scanning electron microscopy (AquaSEM). The morphology of voids remaining after removing the solid PLLA porogen (the macropores) was clearly shown.</description><identifier>ISSN: 0957-4530</identifier><identifier>EISSN: 1573-4838</identifier><identifier>DOI: 10.1007/s10856-007-3217-0</identifier><identifier>PMID: 17619953</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Biocompatible Materials - chemistry ; Biomaterials ; Biomedical Engineering and Bioengineering ; Biomedical materials ; Ceramics ; Chemistry and Materials Science ; Composites ; Glass ; Guided Tissue Regeneration ; Hydrogels ; Hydrogels - chemistry ; Materials Science ; Microscopy, Electron, Scanning ; Natural Materials ; Polyamines - chemistry ; Polyhydroxyethyl Methacrylate - analogs &amp; derivatives ; Polyhydroxyethyl Methacrylate - chemistry ; Polymer Sciences ; Polymers ; Regenerative Medicine/Tissue Engineering ; Studies ; Surfaces and Interfaces ; Thin Films ; Tissue engineering</subject><ispartof>Journal of materials science. Materials in medicine, 2008-02, Vol.19 (2), p.615-621</ispartof><rights>Springer Science+Business Media, LLC 2007</rights><rights>Springer Science+Business Media, LLC 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c431t-23ac15db3828f989ef8c104cee6f1744ea9a055bd25ef475d21b62f5d0ca3b343</citedby><cites>FETCH-LOGICAL-c431t-23ac15db3828f989ef8c104cee6f1744ea9a055bd25ef475d21b62f5d0ca3b343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10856-007-3217-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10856-007-3217-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17619953$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Studenovska, Hana</creatorcontrib><creatorcontrib>louf, Miroslav</creatorcontrib><creatorcontrib>Rypacek, Frantisek</creatorcontrib><title>Poly(HEMA) hydrogels with controlled pore architecture for tissue regeneration applications</title><title>Journal of materials science. Materials in medicine</title><addtitle>J Mater Sci: Mater Med</addtitle><addtitle>J Mater Sci Mater Med</addtitle><description>The technique for fabrication of soft porous hydrogels, in which both the size and the orientation of inner pores can be controlled, was developed. Three-dimensional hydrophilic gels based on poly[2-hydroxyethyl methacrylate] are designed as scaffolds for regeneration of soft tissues, e.g., nerve tissue. Anisotropic macropores of the size ranging from 10 to 50 μm were formed (1) by using a porogen-leaching method with a solid organic porogen, (2) by phase-separation during gelation in solvent-nonsolvent mixture, or (3) by combination of solid porogen elimination and phase-separation. As a porogen, poly( l -lactide) fibers were applied and consequently washed away under mild conditions to obtain desired spatial orientation of pores. Highly water-swollen polymer gels were characterized with high pressure (low vacuum) scanning electron microscopy (AquaSEM). The morphology of voids remaining after removing the solid PLLA porogen (the macropores) was clearly shown.</description><subject>Biocompatible Materials - chemistry</subject><subject>Biomaterials</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedical materials</subject><subject>Ceramics</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Glass</subject><subject>Guided Tissue Regeneration</subject><subject>Hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>Materials Science</subject><subject>Microscopy, Electron, Scanning</subject><subject>Natural Materials</subject><subject>Polyamines - chemistry</subject><subject>Polyhydroxyethyl Methacrylate - analogs &amp; derivatives</subject><subject>Polyhydroxyethyl Methacrylate - chemistry</subject><subject>Polymer Sciences</subject><subject>Polymers</subject><subject>Regenerative Medicine/Tissue Engineering</subject><subject>Studies</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Tissue engineering</subject><issn>0957-4530</issn><issn>1573-4838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU9r3DAQxUVpaDZpP0AvxfRQ0oPbGf2xrGMISRNIaQ_tqQchy-NdB6_lSjZlv3203YVAoQQEeoN-7w3iMfYW4RMC6M8JoVZVmWUpOOoSXrAVKi1KWYv6JVuBUbqUSsApO0vpAQCkUeoVO0VdoTFKrNiv72HYXdxef738WGx2bQxrGlLxp583hQ_jHMMwUFtMIVLhot_0M_l5yUMXYjH3KS1URFrTSNHNfRgLN01D7__q9JqddG5I9OZ4n7OfN9c_rm7L-29f7q4u70svBc4lF86jahtR87oztaGu9gjSE1UdainJGQdKNS1X1EmtWo5NxTvVgneiEVKcsw-H3CmG3wul2W775GkY3EhhSVYD1xJQPQsKDkprYZ4FOVTA88ng-3_Ah7DEMf_Wco5ooBI6Q3iAfAwpRersFPutizuLYPdF2kORdi_3RVrInnfH4KXZUvvkODaXAX4AUn4a1xSfNv8_9RGDcKiM</recordid><startdate>20080201</startdate><enddate>20080201</enddate><creator>Studenovska, Hana</creator><creator>louf, Miroslav</creator><creator>Rypacek, Frantisek</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7X8</scope></search><sort><creationdate>20080201</creationdate><title>Poly(HEMA) hydrogels with controlled pore architecture for tissue regeneration applications</title><author>Studenovska, Hana ; louf, Miroslav ; Rypacek, Frantisek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c431t-23ac15db3828f989ef8c104cee6f1744ea9a055bd25ef475d21b62f5d0ca3b343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Biocompatible Materials - chemistry</topic><topic>Biomaterials</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedical materials</topic><topic>Ceramics</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Glass</topic><topic>Guided Tissue Regeneration</topic><topic>Hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>Materials Science</topic><topic>Microscopy, Electron, Scanning</topic><topic>Natural Materials</topic><topic>Polyamines - chemistry</topic><topic>Polyhydroxyethyl Methacrylate - analogs &amp; derivatives</topic><topic>Polyhydroxyethyl Methacrylate - chemistry</topic><topic>Polymer Sciences</topic><topic>Polymers</topic><topic>Regenerative Medicine/Tissue Engineering</topic><topic>Studies</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Tissue engineering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Studenovska, Hana</creatorcontrib><creatorcontrib>louf, Miroslav</creatorcontrib><creatorcontrib>Rypacek, Frantisek</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of materials science. Materials in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Studenovska, Hana</au><au>louf, Miroslav</au><au>Rypacek, Frantisek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Poly(HEMA) hydrogels with controlled pore architecture for tissue regeneration applications</atitle><jtitle>Journal of materials science. Materials in medicine</jtitle><stitle>J Mater Sci: Mater Med</stitle><addtitle>J Mater Sci Mater Med</addtitle><date>2008-02-01</date><risdate>2008</risdate><volume>19</volume><issue>2</issue><spage>615</spage><epage>621</epage><pages>615-621</pages><issn>0957-4530</issn><eissn>1573-4838</eissn><abstract>The technique for fabrication of soft porous hydrogels, in which both the size and the orientation of inner pores can be controlled, was developed. Three-dimensional hydrophilic gels based on poly[2-hydroxyethyl methacrylate] are designed as scaffolds for regeneration of soft tissues, e.g., nerve tissue. Anisotropic macropores of the size ranging from 10 to 50 μm were formed (1) by using a porogen-leaching method with a solid organic porogen, (2) by phase-separation during gelation in solvent-nonsolvent mixture, or (3) by combination of solid porogen elimination and phase-separation. As a porogen, poly( l -lactide) fibers were applied and consequently washed away under mild conditions to obtain desired spatial orientation of pores. Highly water-swollen polymer gels were characterized with high pressure (low vacuum) scanning electron microscopy (AquaSEM). The morphology of voids remaining after removing the solid PLLA porogen (the macropores) was clearly shown.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>17619953</pmid><doi>10.1007/s10856-007-3217-0</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4530
ispartof Journal of materials science. Materials in medicine, 2008-02, Vol.19 (2), p.615-621
issn 0957-4530
1573-4838
language eng
recordid cdi_proquest_miscellaneous_70274015
source MEDLINE; SpringerNature Journals
subjects Biocompatible Materials - chemistry
Biomaterials
Biomedical Engineering and Bioengineering
Biomedical materials
Ceramics
Chemistry and Materials Science
Composites
Glass
Guided Tissue Regeneration
Hydrogels
Hydrogels - chemistry
Materials Science
Microscopy, Electron, Scanning
Natural Materials
Polyamines - chemistry
Polyhydroxyethyl Methacrylate - analogs & derivatives
Polyhydroxyethyl Methacrylate - chemistry
Polymer Sciences
Polymers
Regenerative Medicine/Tissue Engineering
Studies
Surfaces and Interfaces
Thin Films
Tissue engineering
title Poly(HEMA) hydrogels with controlled pore architecture for tissue regeneration applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T03%3A02%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Poly(HEMA)%20hydrogels%20with%20controlled%20pore%20architecture%20for%20tissue%20regeneration%20applications&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20medicine&rft.au=Studenovska,%20Hana&rft.date=2008-02-01&rft.volume=19&rft.issue=2&rft.spage=615&rft.epage=621&rft.pages=615-621&rft.issn=0957-4530&rft.eissn=1573-4838&rft_id=info:doi/10.1007/s10856-007-3217-0&rft_dat=%3Cproquest_cross%3E1898141701%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=221190637&rft_id=info:pmid/17619953&rfr_iscdi=true