Monte Carlo analysis of a new model-based method for insulin sensitivity testing

Abstract Insulin resistance (IR), or low insulin sensitivity, is a major risk factor in the pathogenesis of type 2 diabetes and cardiovascular disease. A simple, high resolution assessment of IR would enable earlier diagnosis and more accurate monitoring of intervention effects. Current assessments...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods and programs in biomedicine 2008-03, Vol.89 (3), p.215-225
Hauptverfasser: Lotz, Thomas F, Chase, J.Geoffrey, McAuley, Kirsten A, Shaw, Geoffrey M, Wong, Xing-Wei, Lin, Jessica, LeCompte, Aaron, Hann, Christopher E, Mann, Jim I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 225
container_issue 3
container_start_page 215
container_title Computer methods and programs in biomedicine
container_volume 89
creator Lotz, Thomas F
Chase, J.Geoffrey
McAuley, Kirsten A
Shaw, Geoffrey M
Wong, Xing-Wei
Lin, Jessica
LeCompte, Aaron
Hann, Christopher E
Mann, Jim I
description Abstract Insulin resistance (IR), or low insulin sensitivity, is a major risk factor in the pathogenesis of type 2 diabetes and cardiovascular disease. A simple, high resolution assessment of IR would enable earlier diagnosis and more accurate monitoring of intervention effects. Current assessments are either too intensive for clinical settings (Euglycaemic Clamp, IVGTT) or have too low resolution (HOMA, fasting glucose/insulin). Based on high correlation of a model-based measure of insulin sensitivity and the clamp, a novel, clinically useful test protocol is designed with: physiological dosing, short duration ( < 1  h), simple protocol, low cost and high repeatability. Accuracy and repeatability are assessed with Monte Carlo analysis on a virtual clamp cohort ( N = 146 ). Insulin sensitivity as measured by this test has a coefficient of variation (CV) of CV SI = 4.5 % (90% CI: 3.8–5.7%), slightly higher than clamp ISI ( CV ISI = 3.3 % (90% CI: 3.0–4.0%)) and significantly lower than HOMA ( CV HOMA = 10.0 % (90% CI: 9.1–10.8%)). Correlation to glucose and unit normalised ISI is r = 0.98 (90% CI: 0.97–0.98). The proposed protocol is simple, cost effective, repeatable and highly correlated to the gold-standard clamp.
doi_str_mv 10.1016/j.cmpb.2007.03.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70261592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0169260707000582</els_id><sourcerecordid>19334616</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-d5ef20b309c7fbed31b9459c5b1878f2779d52c76d42eb747b8861da299ced0c3</originalsourceid><addsrcrecordid>eNqFkU2r1DAYhYMo3vHqH3AhWblrTdImaUAEGa4fcEVBXYd8vNWMbTIm7ZX596bMgOBCyeJsnnPCOS9CTylpKaHixaF189G2jBDZkq6tcg_t6CBZI7ng99GuQqphgsgr9KiUAyGEcS4eois6sJ71dNihTx9SXADvTZ4SNtFMpxIKTiM2OMIvPCcPU2NNAY9nWL4nj8eUcYhlnULEBWIJS7gLywkvUJYQvz1GD0YzFXhy0Wv09c3Nl_275vbj2_f717eN64d-aTyHkRHbEeXkaMF31KqeK8dtLTCMTErlOXNS-J6Blb20wyCoN0wpB5647ho9P-cec_q51r_1HIqDaTIR0lq0JExQrth_Qaq6rhdUVJCdQZdTKRlGfcxhNvmkKdHb4Pqgt8H1Nrgmna5STc8u6audwf-xXBauwMszAHWMuwBZFxcg1hIhg1u0T-Hf-a_-srs6fHBm-gEnKIe05nq02kIXpon-vJ18u3h9hPCBdb8BRpGmfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19334616</pqid></control><display><type>article</type><title>Monte Carlo analysis of a new model-based method for insulin sensitivity testing</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Lotz, Thomas F ; Chase, J.Geoffrey ; McAuley, Kirsten A ; Shaw, Geoffrey M ; Wong, Xing-Wei ; Lin, Jessica ; LeCompte, Aaron ; Hann, Christopher E ; Mann, Jim I</creator><creatorcontrib>Lotz, Thomas F ; Chase, J.Geoffrey ; McAuley, Kirsten A ; Shaw, Geoffrey M ; Wong, Xing-Wei ; Lin, Jessica ; LeCompte, Aaron ; Hann, Christopher E ; Mann, Jim I</creatorcontrib><description>Abstract Insulin resistance (IR), or low insulin sensitivity, is a major risk factor in the pathogenesis of type 2 diabetes and cardiovascular disease. A simple, high resolution assessment of IR would enable earlier diagnosis and more accurate monitoring of intervention effects. Current assessments are either too intensive for clinical settings (Euglycaemic Clamp, IVGTT) or have too low resolution (HOMA, fasting glucose/insulin). Based on high correlation of a model-based measure of insulin sensitivity and the clamp, a novel, clinically useful test protocol is designed with: physiological dosing, short duration ( &lt; 1  h), simple protocol, low cost and high repeatability. Accuracy and repeatability are assessed with Monte Carlo analysis on a virtual clamp cohort ( N = 146 ). Insulin sensitivity as measured by this test has a coefficient of variation (CV) of CV SI = 4.5 % (90% CI: 3.8–5.7%), slightly higher than clamp ISI ( CV ISI = 3.3 % (90% CI: 3.0–4.0%)) and significantly lower than HOMA ( CV HOMA = 10.0 % (90% CI: 9.1–10.8%)). Correlation to glucose and unit normalised ISI is r = 0.98 (90% CI: 0.97–0.98). The proposed protocol is simple, cost effective, repeatable and highly correlated to the gold-standard clamp.</description><identifier>ISSN: 0169-2607</identifier><identifier>EISSN: 1872-7565</identifier><identifier>DOI: 10.1016/j.cmpb.2007.03.007</identifier><identifier>PMID: 18242418</identifier><language>eng</language><publisher>Ireland: Elsevier Ireland Ltd</publisher><subject>Adult ; Aged ; Diabetes Mellitus, Type 2 - physiopathology ; Diabetes screening ; Female ; Glucose modeling ; Humans ; Insulin - metabolism ; Insulin modeling ; Insulin Resistance ; Insulin Secretion ; Insulin sensitivity ; Internal Medicine ; Male ; Mass Screening ; Middle Aged ; Models, Statistical ; Monte Carlo Method ; Other ; Risk Factors</subject><ispartof>Computer methods and programs in biomedicine, 2008-03, Vol.89 (3), p.215-225</ispartof><rights>Elsevier Ireland Ltd</rights><rights>2007 Elsevier Ireland Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-d5ef20b309c7fbed31b9459c5b1878f2779d52c76d42eb747b8861da299ced0c3</citedby><cites>FETCH-LOGICAL-c484t-d5ef20b309c7fbed31b9459c5b1878f2779d52c76d42eb747b8861da299ced0c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cmpb.2007.03.007$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3552,27931,27932,46002</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18242418$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lotz, Thomas F</creatorcontrib><creatorcontrib>Chase, J.Geoffrey</creatorcontrib><creatorcontrib>McAuley, Kirsten A</creatorcontrib><creatorcontrib>Shaw, Geoffrey M</creatorcontrib><creatorcontrib>Wong, Xing-Wei</creatorcontrib><creatorcontrib>Lin, Jessica</creatorcontrib><creatorcontrib>LeCompte, Aaron</creatorcontrib><creatorcontrib>Hann, Christopher E</creatorcontrib><creatorcontrib>Mann, Jim I</creatorcontrib><title>Monte Carlo analysis of a new model-based method for insulin sensitivity testing</title><title>Computer methods and programs in biomedicine</title><addtitle>Comput Methods Programs Biomed</addtitle><description>Abstract Insulin resistance (IR), or low insulin sensitivity, is a major risk factor in the pathogenesis of type 2 diabetes and cardiovascular disease. A simple, high resolution assessment of IR would enable earlier diagnosis and more accurate monitoring of intervention effects. Current assessments are either too intensive for clinical settings (Euglycaemic Clamp, IVGTT) or have too low resolution (HOMA, fasting glucose/insulin). Based on high correlation of a model-based measure of insulin sensitivity and the clamp, a novel, clinically useful test protocol is designed with: physiological dosing, short duration ( &lt; 1  h), simple protocol, low cost and high repeatability. Accuracy and repeatability are assessed with Monte Carlo analysis on a virtual clamp cohort ( N = 146 ). Insulin sensitivity as measured by this test has a coefficient of variation (CV) of CV SI = 4.5 % (90% CI: 3.8–5.7%), slightly higher than clamp ISI ( CV ISI = 3.3 % (90% CI: 3.0–4.0%)) and significantly lower than HOMA ( CV HOMA = 10.0 % (90% CI: 9.1–10.8%)). Correlation to glucose and unit normalised ISI is r = 0.98 (90% CI: 0.97–0.98). The proposed protocol is simple, cost effective, repeatable and highly correlated to the gold-standard clamp.</description><subject>Adult</subject><subject>Aged</subject><subject>Diabetes Mellitus, Type 2 - physiopathology</subject><subject>Diabetes screening</subject><subject>Female</subject><subject>Glucose modeling</subject><subject>Humans</subject><subject>Insulin - metabolism</subject><subject>Insulin modeling</subject><subject>Insulin Resistance</subject><subject>Insulin Secretion</subject><subject>Insulin sensitivity</subject><subject>Internal Medicine</subject><subject>Male</subject><subject>Mass Screening</subject><subject>Middle Aged</subject><subject>Models, Statistical</subject><subject>Monte Carlo Method</subject><subject>Other</subject><subject>Risk Factors</subject><issn>0169-2607</issn><issn>1872-7565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU2r1DAYhYMo3vHqH3AhWblrTdImaUAEGa4fcEVBXYd8vNWMbTIm7ZX596bMgOBCyeJsnnPCOS9CTylpKaHixaF189G2jBDZkq6tcg_t6CBZI7ng99GuQqphgsgr9KiUAyGEcS4eois6sJ71dNihTx9SXADvTZ4SNtFMpxIKTiM2OMIvPCcPU2NNAY9nWL4nj8eUcYhlnULEBWIJS7gLywkvUJYQvz1GD0YzFXhy0Wv09c3Nl_275vbj2_f717eN64d-aTyHkRHbEeXkaMF31KqeK8dtLTCMTErlOXNS-J6Blb20wyCoN0wpB5647ho9P-cec_q51r_1HIqDaTIR0lq0JExQrth_Qaq6rhdUVJCdQZdTKRlGfcxhNvmkKdHb4Pqgt8H1Nrgmna5STc8u6audwf-xXBauwMszAHWMuwBZFxcg1hIhg1u0T-Hf-a_-srs6fHBm-gEnKIe05nq02kIXpon-vJ18u3h9hPCBdb8BRpGmfw</recordid><startdate>20080301</startdate><enddate>20080301</enddate><creator>Lotz, Thomas F</creator><creator>Chase, J.Geoffrey</creator><creator>McAuley, Kirsten A</creator><creator>Shaw, Geoffrey M</creator><creator>Wong, Xing-Wei</creator><creator>Lin, Jessica</creator><creator>LeCompte, Aaron</creator><creator>Hann, Christopher E</creator><creator>Mann, Jim I</creator><general>Elsevier Ireland Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20080301</creationdate><title>Monte Carlo analysis of a new model-based method for insulin sensitivity testing</title><author>Lotz, Thomas F ; Chase, J.Geoffrey ; McAuley, Kirsten A ; Shaw, Geoffrey M ; Wong, Xing-Wei ; Lin, Jessica ; LeCompte, Aaron ; Hann, Christopher E ; Mann, Jim I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-d5ef20b309c7fbed31b9459c5b1878f2779d52c76d42eb747b8861da299ced0c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Diabetes Mellitus, Type 2 - physiopathology</topic><topic>Diabetes screening</topic><topic>Female</topic><topic>Glucose modeling</topic><topic>Humans</topic><topic>Insulin - metabolism</topic><topic>Insulin modeling</topic><topic>Insulin Resistance</topic><topic>Insulin Secretion</topic><topic>Insulin sensitivity</topic><topic>Internal Medicine</topic><topic>Male</topic><topic>Mass Screening</topic><topic>Middle Aged</topic><topic>Models, Statistical</topic><topic>Monte Carlo Method</topic><topic>Other</topic><topic>Risk Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lotz, Thomas F</creatorcontrib><creatorcontrib>Chase, J.Geoffrey</creatorcontrib><creatorcontrib>McAuley, Kirsten A</creatorcontrib><creatorcontrib>Shaw, Geoffrey M</creatorcontrib><creatorcontrib>Wong, Xing-Wei</creatorcontrib><creatorcontrib>Lin, Jessica</creatorcontrib><creatorcontrib>LeCompte, Aaron</creatorcontrib><creatorcontrib>Hann, Christopher E</creatorcontrib><creatorcontrib>Mann, Jim I</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Computer methods and programs in biomedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lotz, Thomas F</au><au>Chase, J.Geoffrey</au><au>McAuley, Kirsten A</au><au>Shaw, Geoffrey M</au><au>Wong, Xing-Wei</au><au>Lin, Jessica</au><au>LeCompte, Aaron</au><au>Hann, Christopher E</au><au>Mann, Jim I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monte Carlo analysis of a new model-based method for insulin sensitivity testing</atitle><jtitle>Computer methods and programs in biomedicine</jtitle><addtitle>Comput Methods Programs Biomed</addtitle><date>2008-03-01</date><risdate>2008</risdate><volume>89</volume><issue>3</issue><spage>215</spage><epage>225</epage><pages>215-225</pages><issn>0169-2607</issn><eissn>1872-7565</eissn><abstract>Abstract Insulin resistance (IR), or low insulin sensitivity, is a major risk factor in the pathogenesis of type 2 diabetes and cardiovascular disease. A simple, high resolution assessment of IR would enable earlier diagnosis and more accurate monitoring of intervention effects. Current assessments are either too intensive for clinical settings (Euglycaemic Clamp, IVGTT) or have too low resolution (HOMA, fasting glucose/insulin). Based on high correlation of a model-based measure of insulin sensitivity and the clamp, a novel, clinically useful test protocol is designed with: physiological dosing, short duration ( &lt; 1  h), simple protocol, low cost and high repeatability. Accuracy and repeatability are assessed with Monte Carlo analysis on a virtual clamp cohort ( N = 146 ). Insulin sensitivity as measured by this test has a coefficient of variation (CV) of CV SI = 4.5 % (90% CI: 3.8–5.7%), slightly higher than clamp ISI ( CV ISI = 3.3 % (90% CI: 3.0–4.0%)) and significantly lower than HOMA ( CV HOMA = 10.0 % (90% CI: 9.1–10.8%)). Correlation to glucose and unit normalised ISI is r = 0.98 (90% CI: 0.97–0.98). The proposed protocol is simple, cost effective, repeatable and highly correlated to the gold-standard clamp.</abstract><cop>Ireland</cop><pub>Elsevier Ireland Ltd</pub><pmid>18242418</pmid><doi>10.1016/j.cmpb.2007.03.007</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0169-2607
ispartof Computer methods and programs in biomedicine, 2008-03, Vol.89 (3), p.215-225
issn 0169-2607
1872-7565
language eng
recordid cdi_proquest_miscellaneous_70261592
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Adult
Aged
Diabetes Mellitus, Type 2 - physiopathology
Diabetes screening
Female
Glucose modeling
Humans
Insulin - metabolism
Insulin modeling
Insulin Resistance
Insulin Secretion
Insulin sensitivity
Internal Medicine
Male
Mass Screening
Middle Aged
Models, Statistical
Monte Carlo Method
Other
Risk Factors
title Monte Carlo analysis of a new model-based method for insulin sensitivity testing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T23%3A24%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monte%20Carlo%20analysis%20of%20a%20new%20model-based%20method%20for%20insulin%20sensitivity%20testing&rft.jtitle=Computer%20methods%20and%20programs%20in%20biomedicine&rft.au=Lotz,%20Thomas%20F&rft.date=2008-03-01&rft.volume=89&rft.issue=3&rft.spage=215&rft.epage=225&rft.pages=215-225&rft.issn=0169-2607&rft.eissn=1872-7565&rft_id=info:doi/10.1016/j.cmpb.2007.03.007&rft_dat=%3Cproquest_cross%3E19334616%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19334616&rft_id=info:pmid/18242418&rft_els_id=1_s2_0_S0169260707000582&rfr_iscdi=true