VEGF-specific siRNAs modified with 2′-deoxy effectively suppress VEGF expression and inhibit growth of nasopharyngeal carcinoma xenograft in a mouse model

Vascular endothelial growth factor (VEGF) is up-regulated in the vast majority of human tumors. The up-regulation of VEGF not only plays important roles in tumor angiogenesis, but also provides a target for tumor treatment with small interfering RNA (siRNA) that targets VEGF; however, it is unclear...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Life sciences 2008-02, Vol.51 (2), p.104-110
Hauptverfasser: Chen, ShanYi, Gao, GuoFeng, Chen, Wei, Lü, Qing, Tang, Shen, Hua, Zhong, Ye, WenBin, Gu, DaYong, Wang, ShaYan, Zhang, YaOu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 110
container_issue 2
container_start_page 104
container_title Science China. Life sciences
container_volume 51
creator Chen, ShanYi
Gao, GuoFeng
Chen, Wei
Lü, Qing
Tang, Shen
Hua, Zhong
Ye, WenBin
Gu, DaYong
Wang, ShaYan
Zhang, YaOu
description Vascular endothelial growth factor (VEGF) is up-regulated in the vast majority of human tumors. The up-regulation of VEGF not only plays important roles in tumor angiogenesis, but also provides a target for tumor treatment with small interfering RNA (siRNA) that targets VEGF; however, it is unclear whether a quite high up-regulation of VEGF will affect the efficiency of RNA interference strategies targeting VEGF. A high level expression of VEGF was found in CNE cells from a nasopharyngeal carcinoma cell line. In this study, we investigate whether VEGF-specific siRNAs can effectively suppress VEGF expression in CNE cells, and study the methods for the use of VEGF-specific siRNAs as potential therapeutic agents. CNE cells with high VEGF expression induced by hypoxia were transfected with VEGF-specific siRNAs. The expression of VEGF was effectively suppressed by VEGF-specific siRNAs, measured by ELISA, Western blot analysis and RT-PCR. Furthermore, experiments in nude mice bearing nasopharyngeal carcinoma xenograft were initiated 5 d after injection of CNE cells. VEGF-specific siRNAs were modified with 2′-deoxy, then injected into the tumors, and a liposome-mediated siRNA transfection system and ultrasound exposure were used to help delivery of the siRNAs. Tumor growth was reduced significantly after 3 weeks’ treatment. These studies suggest that VEGF-specific siRNAs still can effectively suppress VEGF expression even in tumor cell lines with a relatively high level of VEGF expression, such as CNE, and VEGF-specific siRNAs modified with 2′-deoxy can be used as potential agents for tumor therapy.
doi_str_mv 10.1007/s11427-008-0020-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70256740</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70256740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-c8ba4b51c07dcba76a4fe10c6d1cb9630c8847dc29f4f3b9bf273468be7a8c653</originalsourceid><addsrcrecordid>eNqFkcFu1DAQhi1ERUvhAbggiwO30LHjxM6xqtqCVFGpAq6W44x3XSVxsBO6e-NBeAoeiSfBy65UCQlxsOzRfPPPeH5CXjF4xwDkWWJMcFkAqHw4FOwJOWGq5gWXjXqa3wB10ZRQHZPnKd0DlE0l1DNyzBQvG6XkCfnx5fL6qkgTWu-8pcnffTxPdAhdDrGjD35eU_7r-8-iw7DZUnQO7ey_Yb-laZmmiCnRnQTFzZ_Ah5GasaN-XPvWz3QVw0OWCI6OJoVpbeJ2XKHpqTXR-jEMhm5wDKto3JyLqMm9l4S7CbB_QY6c6RO-PNyn5PPV5aeL98XN7fWHi_ObwgqAubCqNaKtmAXZ2dbI2giHDGzdMds2dQlWKZFTvHHClW3TOi5LUasWpVG2rspT8navO8XwdcE068Eni31vRszTaAm8qqWA_4KskVBKJjL45i_wPixxzJ_QnItKVpzXGWJ7yMaQUkSnp-iHvCHNQO8M1nuDdTZY7wzWLNe8Pggv7YDdY8XB0QzwPZByKq86Pnb-t-pvG8-z5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>224575226</pqid></control><display><type>article</type><title>VEGF-specific siRNAs modified with 2′-deoxy effectively suppress VEGF expression and inhibit growth of nasopharyngeal carcinoma xenograft in a mouse model</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Chen, ShanYi ; Gao, GuoFeng ; Chen, Wei ; Lü, Qing ; Tang, Shen ; Hua, Zhong ; Ye, WenBin ; Gu, DaYong ; Wang, ShaYan ; Zhang, YaOu</creator><creatorcontrib>Chen, ShanYi ; Gao, GuoFeng ; Chen, Wei ; Lü, Qing ; Tang, Shen ; Hua, Zhong ; Ye, WenBin ; Gu, DaYong ; Wang, ShaYan ; Zhang, YaOu</creatorcontrib><description>Vascular endothelial growth factor (VEGF) is up-regulated in the vast majority of human tumors. The up-regulation of VEGF not only plays important roles in tumor angiogenesis, but also provides a target for tumor treatment with small interfering RNA (siRNA) that targets VEGF; however, it is unclear whether a quite high up-regulation of VEGF will affect the efficiency of RNA interference strategies targeting VEGF. A high level expression of VEGF was found in CNE cells from a nasopharyngeal carcinoma cell line. In this study, we investigate whether VEGF-specific siRNAs can effectively suppress VEGF expression in CNE cells, and study the methods for the use of VEGF-specific siRNAs as potential therapeutic agents. CNE cells with high VEGF expression induced by hypoxia were transfected with VEGF-specific siRNAs. The expression of VEGF was effectively suppressed by VEGF-specific siRNAs, measured by ELISA, Western blot analysis and RT-PCR. Furthermore, experiments in nude mice bearing nasopharyngeal carcinoma xenograft were initiated 5 d after injection of CNE cells. VEGF-specific siRNAs were modified with 2′-deoxy, then injected into the tumors, and a liposome-mediated siRNA transfection system and ultrasound exposure were used to help delivery of the siRNAs. Tumor growth was reduced significantly after 3 weeks’ treatment. These studies suggest that VEGF-specific siRNAs still can effectively suppress VEGF expression even in tumor cell lines with a relatively high level of VEGF expression, such as CNE, and VEGF-specific siRNAs modified with 2′-deoxy can be used as potential agents for tumor therapy.</description><identifier>ISSN: 1006-9305</identifier><identifier>ISSN: 1674-7305</identifier><identifier>EISSN: 1862-2798</identifier><identifier>EISSN: 1869-1889</identifier><identifier>DOI: 10.1007/s11427-008-0020-1</identifier><identifier>PMID: 18239887</identifier><language>eng</language><publisher>Beijing: Science in China Press</publisher><subject>Animals ; Biomedical and Life Sciences ; Carcinoma - genetics ; Carcinoma - metabolism ; Carcinoma - pathology ; Carcinoma - prevention &amp; control ; Cell Line, Tumor ; Disease Models, Animal ; Growth Inhibitors - pharmacology ; Growth Inhibitors - physiology ; Humans ; Life Sciences ; Mice ; Mice, Nude ; Nasopharyngeal Neoplasms - genetics ; Nasopharyngeal Neoplasms - metabolism ; Nasopharyngeal Neoplasms - pathology ; Nasopharyngeal Neoplasms - prevention &amp; control ; RNA Interference - physiology ; RNA, Small Interfering - pharmacology ; RNA, Small Interfering - physiology ; Transplantation, Heterologous ; Vascular Endothelial Growth Factor A - antagonists &amp; inhibitors ; Vascular Endothelial Growth Factor A - biosynthesis ; Vascular Endothelial Growth Factor A - genetics</subject><ispartof>Science China. Life sciences, 2008-02, Vol.51 (2), p.104-110</ispartof><rights>Science in China Press 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-c8ba4b51c07dcba76a4fe10c6d1cb9630c8847dc29f4f3b9bf273468be7a8c653</citedby><cites>FETCH-LOGICAL-c400t-c8ba4b51c07dcba76a4fe10c6d1cb9630c8847dc29f4f3b9bf273468be7a8c653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18239887$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, ShanYi</creatorcontrib><creatorcontrib>Gao, GuoFeng</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Lü, Qing</creatorcontrib><creatorcontrib>Tang, Shen</creatorcontrib><creatorcontrib>Hua, Zhong</creatorcontrib><creatorcontrib>Ye, WenBin</creatorcontrib><creatorcontrib>Gu, DaYong</creatorcontrib><creatorcontrib>Wang, ShaYan</creatorcontrib><creatorcontrib>Zhang, YaOu</creatorcontrib><title>VEGF-specific siRNAs modified with 2′-deoxy effectively suppress VEGF expression and inhibit growth of nasopharyngeal carcinoma xenograft in a mouse model</title><title>Science China. Life sciences</title><addtitle>Sci. China Ser. C-Life Sci</addtitle><addtitle>Sci China C Life Sci</addtitle><description>Vascular endothelial growth factor (VEGF) is up-regulated in the vast majority of human tumors. The up-regulation of VEGF not only plays important roles in tumor angiogenesis, but also provides a target for tumor treatment with small interfering RNA (siRNA) that targets VEGF; however, it is unclear whether a quite high up-regulation of VEGF will affect the efficiency of RNA interference strategies targeting VEGF. A high level expression of VEGF was found in CNE cells from a nasopharyngeal carcinoma cell line. In this study, we investigate whether VEGF-specific siRNAs can effectively suppress VEGF expression in CNE cells, and study the methods for the use of VEGF-specific siRNAs as potential therapeutic agents. CNE cells with high VEGF expression induced by hypoxia were transfected with VEGF-specific siRNAs. The expression of VEGF was effectively suppressed by VEGF-specific siRNAs, measured by ELISA, Western blot analysis and RT-PCR. Furthermore, experiments in nude mice bearing nasopharyngeal carcinoma xenograft were initiated 5 d after injection of CNE cells. VEGF-specific siRNAs were modified with 2′-deoxy, then injected into the tumors, and a liposome-mediated siRNA transfection system and ultrasound exposure were used to help delivery of the siRNAs. Tumor growth was reduced significantly after 3 weeks’ treatment. These studies suggest that VEGF-specific siRNAs still can effectively suppress VEGF expression even in tumor cell lines with a relatively high level of VEGF expression, such as CNE, and VEGF-specific siRNAs modified with 2′-deoxy can be used as potential agents for tumor therapy.</description><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Carcinoma - genetics</subject><subject>Carcinoma - metabolism</subject><subject>Carcinoma - pathology</subject><subject>Carcinoma - prevention &amp; control</subject><subject>Cell Line, Tumor</subject><subject>Disease Models, Animal</subject><subject>Growth Inhibitors - pharmacology</subject><subject>Growth Inhibitors - physiology</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Mice</subject><subject>Mice, Nude</subject><subject>Nasopharyngeal Neoplasms - genetics</subject><subject>Nasopharyngeal Neoplasms - metabolism</subject><subject>Nasopharyngeal Neoplasms - pathology</subject><subject>Nasopharyngeal Neoplasms - prevention &amp; control</subject><subject>RNA Interference - physiology</subject><subject>RNA, Small Interfering - pharmacology</subject><subject>RNA, Small Interfering - physiology</subject><subject>Transplantation, Heterologous</subject><subject>Vascular Endothelial Growth Factor A - antagonists &amp; inhibitors</subject><subject>Vascular Endothelial Growth Factor A - biosynthesis</subject><subject>Vascular Endothelial Growth Factor A - genetics</subject><issn>1006-9305</issn><issn>1674-7305</issn><issn>1862-2798</issn><issn>1869-1889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkcFu1DAQhi1ERUvhAbggiwO30LHjxM6xqtqCVFGpAq6W44x3XSVxsBO6e-NBeAoeiSfBy65UCQlxsOzRfPPPeH5CXjF4xwDkWWJMcFkAqHw4FOwJOWGq5gWXjXqa3wB10ZRQHZPnKd0DlE0l1DNyzBQvG6XkCfnx5fL6qkgTWu-8pcnffTxPdAhdDrGjD35eU_7r-8-iw7DZUnQO7ey_Yb-laZmmiCnRnQTFzZ_Ah5GasaN-XPvWz3QVw0OWCI6OJoVpbeJ2XKHpqTXR-jEMhm5wDKto3JyLqMm9l4S7CbB_QY6c6RO-PNyn5PPV5aeL98XN7fWHi_ObwgqAubCqNaKtmAXZ2dbI2giHDGzdMds2dQlWKZFTvHHClW3TOi5LUasWpVG2rspT8navO8XwdcE068Eni31vRszTaAm8qqWA_4KskVBKJjL45i_wPixxzJ_QnItKVpzXGWJ7yMaQUkSnp-iHvCHNQO8M1nuDdTZY7wzWLNe8Pggv7YDdY8XB0QzwPZByKq86Pnb-t-pvG8-z5w</recordid><startdate>20080201</startdate><enddate>20080201</enddate><creator>Chen, ShanYi</creator><creator>Gao, GuoFeng</creator><creator>Chen, Wei</creator><creator>Lü, Qing</creator><creator>Tang, Shen</creator><creator>Hua, Zhong</creator><creator>Ye, WenBin</creator><creator>Gu, DaYong</creator><creator>Wang, ShaYan</creator><creator>Zhang, YaOu</creator><general>Science in China Press</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20080201</creationdate><title>VEGF-specific siRNAs modified with 2′-deoxy effectively suppress VEGF expression and inhibit growth of nasopharyngeal carcinoma xenograft in a mouse model</title><author>Chen, ShanYi ; Gao, GuoFeng ; Chen, Wei ; Lü, Qing ; Tang, Shen ; Hua, Zhong ; Ye, WenBin ; Gu, DaYong ; Wang, ShaYan ; Zhang, YaOu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-c8ba4b51c07dcba76a4fe10c6d1cb9630c8847dc29f4f3b9bf273468be7a8c653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Carcinoma - genetics</topic><topic>Carcinoma - metabolism</topic><topic>Carcinoma - pathology</topic><topic>Carcinoma - prevention &amp; control</topic><topic>Cell Line, Tumor</topic><topic>Disease Models, Animal</topic><topic>Growth Inhibitors - pharmacology</topic><topic>Growth Inhibitors - physiology</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Mice</topic><topic>Mice, Nude</topic><topic>Nasopharyngeal Neoplasms - genetics</topic><topic>Nasopharyngeal Neoplasms - metabolism</topic><topic>Nasopharyngeal Neoplasms - pathology</topic><topic>Nasopharyngeal Neoplasms - prevention &amp; control</topic><topic>RNA Interference - physiology</topic><topic>RNA, Small Interfering - pharmacology</topic><topic>RNA, Small Interfering - physiology</topic><topic>Transplantation, Heterologous</topic><topic>Vascular Endothelial Growth Factor A - antagonists &amp; inhibitors</topic><topic>Vascular Endothelial Growth Factor A - biosynthesis</topic><topic>Vascular Endothelial Growth Factor A - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, ShanYi</creatorcontrib><creatorcontrib>Gao, GuoFeng</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Lü, Qing</creatorcontrib><creatorcontrib>Tang, Shen</creatorcontrib><creatorcontrib>Hua, Zhong</creatorcontrib><creatorcontrib>Ye, WenBin</creatorcontrib><creatorcontrib>Gu, DaYong</creatorcontrib><creatorcontrib>Wang, ShaYan</creatorcontrib><creatorcontrib>Zhang, YaOu</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science China. Life sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, ShanYi</au><au>Gao, GuoFeng</au><au>Chen, Wei</au><au>Lü, Qing</au><au>Tang, Shen</au><au>Hua, Zhong</au><au>Ye, WenBin</au><au>Gu, DaYong</au><au>Wang, ShaYan</au><au>Zhang, YaOu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>VEGF-specific siRNAs modified with 2′-deoxy effectively suppress VEGF expression and inhibit growth of nasopharyngeal carcinoma xenograft in a mouse model</atitle><jtitle>Science China. Life sciences</jtitle><stitle>Sci. China Ser. C-Life Sci</stitle><addtitle>Sci China C Life Sci</addtitle><date>2008-02-01</date><risdate>2008</risdate><volume>51</volume><issue>2</issue><spage>104</spage><epage>110</epage><pages>104-110</pages><issn>1006-9305</issn><issn>1674-7305</issn><eissn>1862-2798</eissn><eissn>1869-1889</eissn><abstract>Vascular endothelial growth factor (VEGF) is up-regulated in the vast majority of human tumors. The up-regulation of VEGF not only plays important roles in tumor angiogenesis, but also provides a target for tumor treatment with small interfering RNA (siRNA) that targets VEGF; however, it is unclear whether a quite high up-regulation of VEGF will affect the efficiency of RNA interference strategies targeting VEGF. A high level expression of VEGF was found in CNE cells from a nasopharyngeal carcinoma cell line. In this study, we investigate whether VEGF-specific siRNAs can effectively suppress VEGF expression in CNE cells, and study the methods for the use of VEGF-specific siRNAs as potential therapeutic agents. CNE cells with high VEGF expression induced by hypoxia were transfected with VEGF-specific siRNAs. The expression of VEGF was effectively suppressed by VEGF-specific siRNAs, measured by ELISA, Western blot analysis and RT-PCR. Furthermore, experiments in nude mice bearing nasopharyngeal carcinoma xenograft were initiated 5 d after injection of CNE cells. VEGF-specific siRNAs were modified with 2′-deoxy, then injected into the tumors, and a liposome-mediated siRNA transfection system and ultrasound exposure were used to help delivery of the siRNAs. Tumor growth was reduced significantly after 3 weeks’ treatment. These studies suggest that VEGF-specific siRNAs still can effectively suppress VEGF expression even in tumor cell lines with a relatively high level of VEGF expression, such as CNE, and VEGF-specific siRNAs modified with 2′-deoxy can be used as potential agents for tumor therapy.</abstract><cop>Beijing</cop><pub>Science in China Press</pub><pmid>18239887</pmid><doi>10.1007/s11427-008-0020-1</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1006-9305
ispartof Science China. Life sciences, 2008-02, Vol.51 (2), p.104-110
issn 1006-9305
1674-7305
1862-2798
1869-1889
language eng
recordid cdi_proquest_miscellaneous_70256740
source MEDLINE; SpringerLink Journals; Alma/SFX Local Collection
subjects Animals
Biomedical and Life Sciences
Carcinoma - genetics
Carcinoma - metabolism
Carcinoma - pathology
Carcinoma - prevention & control
Cell Line, Tumor
Disease Models, Animal
Growth Inhibitors - pharmacology
Growth Inhibitors - physiology
Humans
Life Sciences
Mice
Mice, Nude
Nasopharyngeal Neoplasms - genetics
Nasopharyngeal Neoplasms - metabolism
Nasopharyngeal Neoplasms - pathology
Nasopharyngeal Neoplasms - prevention & control
RNA Interference - physiology
RNA, Small Interfering - pharmacology
RNA, Small Interfering - physiology
Transplantation, Heterologous
Vascular Endothelial Growth Factor A - antagonists & inhibitors
Vascular Endothelial Growth Factor A - biosynthesis
Vascular Endothelial Growth Factor A - genetics
title VEGF-specific siRNAs modified with 2′-deoxy effectively suppress VEGF expression and inhibit growth of nasopharyngeal carcinoma xenograft in a mouse model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T04%3A46%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=VEGF-specific%20siRNAs%20modified%20with%202%E2%80%B2-deoxy%20effectively%20suppress%20VEGF%20expression%20and%20inhibit%20growth%20of%20nasopharyngeal%20carcinoma%20xenograft%20in%20a%20mouse%20model&rft.jtitle=Science%20China.%20Life%20sciences&rft.au=Chen,%20ShanYi&rft.date=2008-02-01&rft.volume=51&rft.issue=2&rft.spage=104&rft.epage=110&rft.pages=104-110&rft.issn=1006-9305&rft.eissn=1862-2798&rft_id=info:doi/10.1007/s11427-008-0020-1&rft_dat=%3Cproquest_cross%3E70256740%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=224575226&rft_id=info:pmid/18239887&rfr_iscdi=true