DNA-guided crystallization of colloidal nanoparticles

Many nanometre-sized building blocks will readily assemble into macroscopic structures. If the process is accompanied by effective control over the interactions between the blocks and all entropic effects, then the resultant structures will be ordered with a precision hard to achieve with other fabr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature 2008-01, Vol.451 (7178), p.549-552
Hauptverfasser: Maye, Mathew M, Gang, Oleg, van der Lelie, Daniel, Nykypanchuk, Dmytro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 552
container_issue 7178
container_start_page 549
container_title Nature
container_volume 451
creator Maye, Mathew M
Gang, Oleg
van der Lelie, Daniel
Nykypanchuk, Dmytro
description Many nanometre-sized building blocks will readily assemble into macroscopic structures. If the process is accompanied by effective control over the interactions between the blocks and all entropic effects, then the resultant structures will be ordered with a precision hard to achieve with other fabrication methods. But it remains challenging to use self-assembly to design systems comprised of different types of building blocks-to realize novel magnetic, plasmonic and photonic metamaterials, for example. A conceptually simple idea for overcoming this problem is the use of 'encodable' interactions between building blocks; this can in principle be straightforwardly implemented using biomolecules. Strategies that use DNA programmability to control the placement of nanoparticles in one and two dimensions have indeed been demonstrated. However, our theoretical understanding of how to extend this approach to three dimensions is limited, and most experiments have yielded amorphous aggregates and only occasionally crystallites of close-packed micrometre-sized particles. Here, we report the formation of three-dimensional crystalline assemblies of gold nanoparticles mediated by interactions between complementary DNA molecules attached to the nanoparticles' surface. We find that the nanoparticle crystals form reversibly during heating and cooling cycles. Moreover, the body-centred-cubic lattice structure is temperature-tuneable and structurally open, with particles occupying only ∼4% of the unit cell volume. We expect that our DNA-mediated crystallization approach, and the insight into DNA design requirements it has provided, will facilitate both the creation of new classes of ordered multicomponent metamaterials and the exploration of the phase behaviour of hybrid systems with addressable interactions.
doi_str_mv 10.1038/nature06560
format Article
fullrecord <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_proquest_miscellaneous_70253665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A193476436</galeid><sourcerecordid>A193476436</sourcerecordid><originalsourceid>FETCH-LOGICAL-c638t-e949de05c988546698fda6f0220053bbf4a8d066d33964df37cd9ba458a54ea73</originalsourceid><addsrcrecordid>eNqF0s2L1DAYBvAiijuunrzLKCiIdk2bjybHYfxaWFbQFY8hk7wds2SS2SQF17_eLC27MzIiPQTSX5-2b56qetqgkwZh_s6rPERAjDJ0r5o1pGM1Yby7X80QanmNOGZH1aOULhFCtOnIw-qo4S2mRLBZRd-fL-r1YA2YuY7XKSvn7G-VbfDz0M91cC5Yo9zcKx-2KmarHaTH1YNeuQRPpvW4-v7xw8Xyc3325dPpcnFWa4Z5rkEQYQBRLTinhDHBe6NYj9q2fAlerXqiuEGMGYwFI6bHnTZipQjlihJQHT6uno-5IWUrk7YZ9E8dvAedpaAlXhTzajTbGK4GSFlubNLgnPIQhiQ71FLMGP0vbBEVZT6swBd_wcswRF9-tBhCCcUdKage0Vo5kNb3IUel1-AhKhc89LZsLxqBy3kQvBO65_XWXslddHIAlcvAxuqDqa_3Higmw6-8VkNK8vTb13375t92cfFjeX5Q6xhSitDLbbQbFa9lg-RN7-RO74p-No1sWG3A3NmpaAW8nIBKWrk-Kq9tunWlEG2Dyc1Y344ulVt-DfFu9offOxVk3LzN2zV_APwS9eI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204545374</pqid></control><display><type>article</type><title>DNA-guided crystallization of colloidal nanoparticles</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Maye, Mathew M ; Gang, Oleg ; van der Lelie, Daniel ; Nykypanchuk, Dmytro</creator><creatorcontrib>Maye, Mathew M ; Gang, Oleg ; van der Lelie, Daniel ; Nykypanchuk, Dmytro ; Brookhaven National Laboratory (BNL) National Synchrotron Light Source</creatorcontrib><description>Many nanometre-sized building blocks will readily assemble into macroscopic structures. If the process is accompanied by effective control over the interactions between the blocks and all entropic effects, then the resultant structures will be ordered with a precision hard to achieve with other fabrication methods. But it remains challenging to use self-assembly to design systems comprised of different types of building blocks-to realize novel magnetic, plasmonic and photonic metamaterials, for example. A conceptually simple idea for overcoming this problem is the use of 'encodable' interactions between building blocks; this can in principle be straightforwardly implemented using biomolecules. Strategies that use DNA programmability to control the placement of nanoparticles in one and two dimensions have indeed been demonstrated. However, our theoretical understanding of how to extend this approach to three dimensions is limited, and most experiments have yielded amorphous aggregates and only occasionally crystallites of close-packed micrometre-sized particles. Here, we report the formation of three-dimensional crystalline assemblies of gold nanoparticles mediated by interactions between complementary DNA molecules attached to the nanoparticles' surface. We find that the nanoparticle crystals form reversibly during heating and cooling cycles. Moreover, the body-centred-cubic lattice structure is temperature-tuneable and structurally open, with particles occupying only ∼4% of the unit cell volume. We expect that our DNA-mediated crystallization approach, and the insight into DNA design requirements it has provided, will facilitate both the creation of new classes of ordered multicomponent metamaterials and the exploration of the phase behaviour of hybrid systems with addressable interactions.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>EISSN: 1476-4679</identifier><identifier>DOI: 10.1038/nature06560</identifier><identifier>PMID: 18235496</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Aggregates ; BASIC BIOLOGICAL SCIENCES ; Biological and medical sciences ; Biotechnology ; Chemical properties ; Colloids - chemistry ; Cooling ; Crystal structure ; CRYSTALLIZATION ; Crystallization - methods ; Crystallography ; Crystals ; Deoxyribonucleic acid ; DESIGN ; DIMENSIONS ; DNA ; DNA, Single-Stranded - chemistry ; EXPLORATION ; FABRICATION ; Fundamental and applied biological sciences. Psychology ; GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE ; Genetic aspects ; GOLD ; Gold - chemistry ; HEATING ; Humanities and Social Sciences ; HYBRID SYSTEMS ; Industrial applications and implications. Economical aspects ; letter ; Materials science ; Metal Nanoparticles - chemistry ; multidisciplinary ; Nanoparticles ; national synchrotron light source ; Nucleic Acid Conformation ; Other applications ; Scattering, Radiation ; Science ; Science (multidisciplinary) ; Structure ; Theory ; Thermodynamics ; Transition Temperature ; X-Ray Diffraction</subject><ispartof>Nature, 2008-01, Vol.451 (7178), p.549-552</ispartof><rights>Springer Nature Limited 2008</rights><rights>2008 INIST-CNRS</rights><rights>COPYRIGHT 2008 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jan 31, 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c638t-e949de05c988546698fda6f0220053bbf4a8d066d33964df37cd9ba458a54ea73</citedby><cites>FETCH-LOGICAL-c638t-e949de05c988546698fda6f0220053bbf4a8d066d33964df37cd9ba458a54ea73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature06560$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature06560$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,883,27907,27908,41471,42540,51302</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20021344$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18235496$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/959499$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Maye, Mathew M</creatorcontrib><creatorcontrib>Gang, Oleg</creatorcontrib><creatorcontrib>van der Lelie, Daniel</creatorcontrib><creatorcontrib>Nykypanchuk, Dmytro</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL) National Synchrotron Light Source</creatorcontrib><title>DNA-guided crystallization of colloidal nanoparticles</title><title>Nature</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Many nanometre-sized building blocks will readily assemble into macroscopic structures. If the process is accompanied by effective control over the interactions between the blocks and all entropic effects, then the resultant structures will be ordered with a precision hard to achieve with other fabrication methods. But it remains challenging to use self-assembly to design systems comprised of different types of building blocks-to realize novel magnetic, plasmonic and photonic metamaterials, for example. A conceptually simple idea for overcoming this problem is the use of 'encodable' interactions between building blocks; this can in principle be straightforwardly implemented using biomolecules. Strategies that use DNA programmability to control the placement of nanoparticles in one and two dimensions have indeed been demonstrated. However, our theoretical understanding of how to extend this approach to three dimensions is limited, and most experiments have yielded amorphous aggregates and only occasionally crystallites of close-packed micrometre-sized particles. Here, we report the formation of three-dimensional crystalline assemblies of gold nanoparticles mediated by interactions between complementary DNA molecules attached to the nanoparticles' surface. We find that the nanoparticle crystals form reversibly during heating and cooling cycles. Moreover, the body-centred-cubic lattice structure is temperature-tuneable and structurally open, with particles occupying only ∼4% of the unit cell volume. We expect that our DNA-mediated crystallization approach, and the insight into DNA design requirements it has provided, will facilitate both the creation of new classes of ordered multicomponent metamaterials and the exploration of the phase behaviour of hybrid systems with addressable interactions.</description><subject>Aggregates</subject><subject>BASIC BIOLOGICAL SCIENCES</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>Chemical properties</subject><subject>Colloids - chemistry</subject><subject>Cooling</subject><subject>Crystal structure</subject><subject>CRYSTALLIZATION</subject><subject>Crystallization - methods</subject><subject>Crystallography</subject><subject>Crystals</subject><subject>Deoxyribonucleic acid</subject><subject>DESIGN</subject><subject>DIMENSIONS</subject><subject>DNA</subject><subject>DNA, Single-Stranded - chemistry</subject><subject>EXPLORATION</subject><subject>FABRICATION</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</subject><subject>Genetic aspects</subject><subject>GOLD</subject><subject>Gold - chemistry</subject><subject>HEATING</subject><subject>Humanities and Social Sciences</subject><subject>HYBRID SYSTEMS</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>letter</subject><subject>Materials science</subject><subject>Metal Nanoparticles - chemistry</subject><subject>multidisciplinary</subject><subject>Nanoparticles</subject><subject>national synchrotron light source</subject><subject>Nucleic Acid Conformation</subject><subject>Other applications</subject><subject>Scattering, Radiation</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Structure</subject><subject>Theory</subject><subject>Thermodynamics</subject><subject>Transition Temperature</subject><subject>X-Ray Diffraction</subject><issn>0028-0836</issn><issn>1476-4687</issn><issn>1476-4679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0s2L1DAYBvAiijuunrzLKCiIdk2bjybHYfxaWFbQFY8hk7wds2SS2SQF17_eLC27MzIiPQTSX5-2b56qetqgkwZh_s6rPERAjDJ0r5o1pGM1Yby7X80QanmNOGZH1aOULhFCtOnIw-qo4S2mRLBZRd-fL-r1YA2YuY7XKSvn7G-VbfDz0M91cC5Yo9zcKx-2KmarHaTH1YNeuQRPpvW4-v7xw8Xyc3325dPpcnFWa4Z5rkEQYQBRLTinhDHBe6NYj9q2fAlerXqiuEGMGYwFI6bHnTZipQjlihJQHT6uno-5IWUrk7YZ9E8dvAedpaAlXhTzajTbGK4GSFlubNLgnPIQhiQ71FLMGP0vbBEVZT6swBd_wcswRF9-tBhCCcUdKage0Vo5kNb3IUel1-AhKhc89LZsLxqBy3kQvBO65_XWXslddHIAlcvAxuqDqa_3Higmw6-8VkNK8vTb13375t92cfFjeX5Q6xhSitDLbbQbFa9lg-RN7-RO74p-No1sWG3A3NmpaAW8nIBKWrk-Kq9tunWlEG2Dyc1Y344ulVt-DfFu9offOxVk3LzN2zV_APwS9eI</recordid><startdate>20080131</startdate><enddate>20080131</enddate><creator>Maye, Mathew M</creator><creator>Gang, Oleg</creator><creator>van der Lelie, Daniel</creator><creator>Nykypanchuk, Dmytro</creator><general>Nature Publishing Group UK</general><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7QO</scope><scope>7X8</scope><scope>OTOTI</scope></search><sort><creationdate>20080131</creationdate><title>DNA-guided crystallization of colloidal nanoparticles</title><author>Maye, Mathew M ; Gang, Oleg ; van der Lelie, Daniel ; Nykypanchuk, Dmytro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c638t-e949de05c988546698fda6f0220053bbf4a8d066d33964df37cd9ba458a54ea73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Aggregates</topic><topic>BASIC BIOLOGICAL SCIENCES</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>Chemical properties</topic><topic>Colloids - chemistry</topic><topic>Cooling</topic><topic>Crystal structure</topic><topic>CRYSTALLIZATION</topic><topic>Crystallization - methods</topic><topic>Crystallography</topic><topic>Crystals</topic><topic>Deoxyribonucleic acid</topic><topic>DESIGN</topic><topic>DIMENSIONS</topic><topic>DNA</topic><topic>DNA, Single-Stranded - chemistry</topic><topic>EXPLORATION</topic><topic>FABRICATION</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE</topic><topic>Genetic aspects</topic><topic>GOLD</topic><topic>Gold - chemistry</topic><topic>HEATING</topic><topic>Humanities and Social Sciences</topic><topic>HYBRID SYSTEMS</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>letter</topic><topic>Materials science</topic><topic>Metal Nanoparticles - chemistry</topic><topic>multidisciplinary</topic><topic>Nanoparticles</topic><topic>national synchrotron light source</topic><topic>Nucleic Acid Conformation</topic><topic>Other applications</topic><topic>Scattering, Radiation</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Structure</topic><topic>Theory</topic><topic>Thermodynamics</topic><topic>Transition Temperature</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maye, Mathew M</creatorcontrib><creatorcontrib>Gang, Oleg</creatorcontrib><creatorcontrib>van der Lelie, Daniel</creatorcontrib><creatorcontrib>Nykypanchuk, Dmytro</creatorcontrib><creatorcontrib>Brookhaven National Laboratory (BNL) National Synchrotron Light Source</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Nature</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maye, Mathew M</au><au>Gang, Oleg</au><au>van der Lelie, Daniel</au><au>Nykypanchuk, Dmytro</au><aucorp>Brookhaven National Laboratory (BNL) National Synchrotron Light Source</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DNA-guided crystallization of colloidal nanoparticles</atitle><jtitle>Nature</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2008-01-31</date><risdate>2008</risdate><volume>451</volume><issue>7178</issue><spage>549</spage><epage>552</epage><pages>549-552</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><eissn>1476-4679</eissn><coden>NATUAS</coden><abstract>Many nanometre-sized building blocks will readily assemble into macroscopic structures. If the process is accompanied by effective control over the interactions between the blocks and all entropic effects, then the resultant structures will be ordered with a precision hard to achieve with other fabrication methods. But it remains challenging to use self-assembly to design systems comprised of different types of building blocks-to realize novel magnetic, plasmonic and photonic metamaterials, for example. A conceptually simple idea for overcoming this problem is the use of 'encodable' interactions between building blocks; this can in principle be straightforwardly implemented using biomolecules. Strategies that use DNA programmability to control the placement of nanoparticles in one and two dimensions have indeed been demonstrated. However, our theoretical understanding of how to extend this approach to three dimensions is limited, and most experiments have yielded amorphous aggregates and only occasionally crystallites of close-packed micrometre-sized particles. Here, we report the formation of three-dimensional crystalline assemblies of gold nanoparticles mediated by interactions between complementary DNA molecules attached to the nanoparticles' surface. We find that the nanoparticle crystals form reversibly during heating and cooling cycles. Moreover, the body-centred-cubic lattice structure is temperature-tuneable and structurally open, with particles occupying only ∼4% of the unit cell volume. We expect that our DNA-mediated crystallization approach, and the insight into DNA design requirements it has provided, will facilitate both the creation of new classes of ordered multicomponent metamaterials and the exploration of the phase behaviour of hybrid systems with addressable interactions.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>18235496</pmid><doi>10.1038/nature06560</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature, 2008-01, Vol.451 (7178), p.549-552
issn 0028-0836
1476-4687
1476-4679
language eng
recordid cdi_proquest_miscellaneous_70253665
source MEDLINE; SpringerLink Journals; Nature Journals Online
subjects Aggregates
BASIC BIOLOGICAL SCIENCES
Biological and medical sciences
Biotechnology
Chemical properties
Colloids - chemistry
Cooling
Crystal structure
CRYSTALLIZATION
Crystallization - methods
Crystallography
Crystals
Deoxyribonucleic acid
DESIGN
DIMENSIONS
DNA
DNA, Single-Stranded - chemistry
EXPLORATION
FABRICATION
Fundamental and applied biological sciences. Psychology
GENERAL AND MISCELLANEOUS//MATHEMATICS, COMPUTING, AND INFORMATION SCIENCE
Genetic aspects
GOLD
Gold - chemistry
HEATING
Humanities and Social Sciences
HYBRID SYSTEMS
Industrial applications and implications. Economical aspects
letter
Materials science
Metal Nanoparticles - chemistry
multidisciplinary
Nanoparticles
national synchrotron light source
Nucleic Acid Conformation
Other applications
Scattering, Radiation
Science
Science (multidisciplinary)
Structure
Theory
Thermodynamics
Transition Temperature
X-Ray Diffraction
title DNA-guided crystallization of colloidal nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T21%3A34%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DNA-guided%20crystallization%20of%20colloidal%20nanoparticles&rft.jtitle=Nature&rft.au=Maye,%20Mathew%20M&rft.aucorp=Brookhaven%20National%20Laboratory%20(BNL)%20National%20Synchrotron%20Light%20Source&rft.date=2008-01-31&rft.volume=451&rft.issue=7178&rft.spage=549&rft.epage=552&rft.pages=549-552&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature06560&rft_dat=%3Cgale_osti_%3EA193476436%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204545374&rft_id=info:pmid/18235496&rft_galeid=A193476436&rfr_iscdi=true