Novel “Lipid-Flow Chip” Configuration to Determine Donor-to-Acceptor Ratio-Dependent Fluorescence Resonance Energy Transfer Efficiency

We report on the determination of fluorescence resonance energy transfer (FRET) efficiency, which is dependent on the donor-to-acceptor (D−A) ratio, by using a new type of microchannel device called a “lipid-flow chip”. The chip comprises two supported lipid bilayers (SLBs) that self-spread from eit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2008-02, Vol.24 (3), p.921-926
Hauptverfasser: Furukawa, Kazuaki, Nakashima, Hiroshi, Kashimura, Yoshiaki, Torimitsu, Keiichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 926
container_issue 3
container_start_page 921
container_title Langmuir
container_volume 24
creator Furukawa, Kazuaki
Nakashima, Hiroshi
Kashimura, Yoshiaki
Torimitsu, Keiichi
description We report on the determination of fluorescence resonance energy transfer (FRET) efficiency, which is dependent on the donor-to-acceptor (D−A) ratio, by using a new type of microchannel device called a “lipid-flow chip”. The chip comprises two supported lipid bilayers (SLBs) that self-spread from either side of 10 μm wide straight lines and carry molecules embedded in them. We first show that the diffusion process that occurs when the two SLBs collide with each other in the channel and form a unified SLB can be expressed by a one-dimensional diffusion equation. Next we describe a method for determining the FRET efficiency between NBD (donor) and Texas Red (acceptor) from observations using the lipid-flow chip by employing a one-dimensional diffusion model. The advantages of our method are that all the D−A ratios are achieved in one chip, and a large number of data are recorded in one chip. The FRET efficiency varies depending on the D−A ratio under conditions whereby the concentration of the sum of the donors and acceptors is constant. The Förster radius is also estimated from our results using a known model describing two-dimensional FRET systems, which yields a radius consistent with the previously reported value for NBD and Texas Red.
doi_str_mv 10.1021/la702695f
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70248327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70248327</sourcerecordid><originalsourceid>FETCH-LOGICAL-a447t-f42f623ab2135af8009c621e77a279694c13500b84bfd554ff7a209896586ed13</originalsourceid><addsrcrecordid>eNpt0M1uEzEQB_AVAtFQOPACyBeQOBj8tevdY5UPiogKtOFsOd5xcdnYi70L5NYzzwAv1yfBUaL0wskjz0-jmX9RPKfkDSWMvu20JKxqSvugmNCSEVzWTD4sJkQKjqWo-EnxJKUbQkjDRfO4OKE1LQWnbFL8vgg_oEN3t3-WrnctXnThJ5p-df3d7V80Dd666zHqwQWPhoBmMEDcOA9oFnyIeAj4zBjohxDR5U7hGfTgW_ADWnRjiJAMeAPoElLwelfNPcTrLVpF7ZOFiObWOuMy2j4tHlndJXh2eE-LL4v5anqOlx_fvZ-eLbEWQg7YCmYrxvWaUV5qW-ejTMUoSKmZbKpGmPxPyLoWa9uWpbA2N0hTN1VZV9BSflq82s_tY_g-QhrUxuU1u057CGNSOUtRcyYzfL2HJoaUIljVR7fRcasoUbvg1TH4bF8cho7rDbT38pB0Bi8PQCejO5vvNy4dHSNENETw7PDeuTTAr2Nfx2-qklyWavXpStXs4urDuVipz_dztUnqJozR5-z-s-A_Q7-ohQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70248327</pqid></control><display><type>article</type><title>Novel “Lipid-Flow Chip” Configuration to Determine Donor-to-Acceptor Ratio-Dependent Fluorescence Resonance Energy Transfer Efficiency</title><source>MEDLINE</source><source>American Chemical Society Web Editions</source><creator>Furukawa, Kazuaki ; Nakashima, Hiroshi ; Kashimura, Yoshiaki ; Torimitsu, Keiichi</creator><creatorcontrib>Furukawa, Kazuaki ; Nakashima, Hiroshi ; Kashimura, Yoshiaki ; Torimitsu, Keiichi</creatorcontrib><description>We report on the determination of fluorescence resonance energy transfer (FRET) efficiency, which is dependent on the donor-to-acceptor (D−A) ratio, by using a new type of microchannel device called a “lipid-flow chip”. The chip comprises two supported lipid bilayers (SLBs) that self-spread from either side of 10 μm wide straight lines and carry molecules embedded in them. We first show that the diffusion process that occurs when the two SLBs collide with each other in the channel and form a unified SLB can be expressed by a one-dimensional diffusion equation. Next we describe a method for determining the FRET efficiency between NBD (donor) and Texas Red (acceptor) from observations using the lipid-flow chip by employing a one-dimensional diffusion model. The advantages of our method are that all the D−A ratios are achieved in one chip, and a large number of data are recorded in one chip. The FRET efficiency varies depending on the D−A ratio under conditions whereby the concentration of the sum of the donors and acceptors is constant. The Förster radius is also estimated from our results using a known model describing two-dimensional FRET systems, which yields a radius consistent with the previously reported value for NBD and Texas Red.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la702695f</identifier><identifier>PMID: 18154312</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Chemistry ; Colloidal state and disperse state ; Diffusion ; Exact sciences and technology ; Fluorescence Resonance Energy Transfer - instrumentation ; Fluorescence Resonance Energy Transfer - methods ; Fluorescence Resonance Energy Transfer - statistics &amp; numerical data ; Fluorescent Dyes ; General and physical chemistry ; Lipid Bilayers - chemistry ; Microfluidic Analytical Techniques ; Microscopy, Confocal ; Oxadiazoles ; Surface physical chemistry ; Xanthenes</subject><ispartof>Langmuir, 2008-02, Vol.24 (3), p.921-926</ispartof><rights>Copyright © 2008 American Chemical Society</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a447t-f42f623ab2135af8009c621e77a279694c13500b84bfd554ff7a209896586ed13</citedby><cites>FETCH-LOGICAL-a447t-f42f623ab2135af8009c621e77a279694c13500b84bfd554ff7a209896586ed13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la702695f$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la702695f$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20049043$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18154312$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Furukawa, Kazuaki</creatorcontrib><creatorcontrib>Nakashima, Hiroshi</creatorcontrib><creatorcontrib>Kashimura, Yoshiaki</creatorcontrib><creatorcontrib>Torimitsu, Keiichi</creatorcontrib><title>Novel “Lipid-Flow Chip” Configuration to Determine Donor-to-Acceptor Ratio-Dependent Fluorescence Resonance Energy Transfer Efficiency</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>We report on the determination of fluorescence resonance energy transfer (FRET) efficiency, which is dependent on the donor-to-acceptor (D−A) ratio, by using a new type of microchannel device called a “lipid-flow chip”. The chip comprises two supported lipid bilayers (SLBs) that self-spread from either side of 10 μm wide straight lines and carry molecules embedded in them. We first show that the diffusion process that occurs when the two SLBs collide with each other in the channel and form a unified SLB can be expressed by a one-dimensional diffusion equation. Next we describe a method for determining the FRET efficiency between NBD (donor) and Texas Red (acceptor) from observations using the lipid-flow chip by employing a one-dimensional diffusion model. The advantages of our method are that all the D−A ratios are achieved in one chip, and a large number of data are recorded in one chip. The FRET efficiency varies depending on the D−A ratio under conditions whereby the concentration of the sum of the donors and acceptors is constant. The Förster radius is also estimated from our results using a known model describing two-dimensional FRET systems, which yields a radius consistent with the previously reported value for NBD and Texas Red.</description><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Diffusion</subject><subject>Exact sciences and technology</subject><subject>Fluorescence Resonance Energy Transfer - instrumentation</subject><subject>Fluorescence Resonance Energy Transfer - methods</subject><subject>Fluorescence Resonance Energy Transfer - statistics &amp; numerical data</subject><subject>Fluorescent Dyes</subject><subject>General and physical chemistry</subject><subject>Lipid Bilayers - chemistry</subject><subject>Microfluidic Analytical Techniques</subject><subject>Microscopy, Confocal</subject><subject>Oxadiazoles</subject><subject>Surface physical chemistry</subject><subject>Xanthenes</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0M1uEzEQB_AVAtFQOPACyBeQOBj8tevdY5UPiogKtOFsOd5xcdnYi70L5NYzzwAv1yfBUaL0wskjz0-jmX9RPKfkDSWMvu20JKxqSvugmNCSEVzWTD4sJkQKjqWo-EnxJKUbQkjDRfO4OKE1LQWnbFL8vgg_oEN3t3-WrnctXnThJ5p-df3d7V80Dd666zHqwQWPhoBmMEDcOA9oFnyIeAj4zBjohxDR5U7hGfTgW_ADWnRjiJAMeAPoElLwelfNPcTrLVpF7ZOFiObWOuMy2j4tHlndJXh2eE-LL4v5anqOlx_fvZ-eLbEWQg7YCmYrxvWaUV5qW-ejTMUoSKmZbKpGmPxPyLoWa9uWpbA2N0hTN1VZV9BSflq82s_tY_g-QhrUxuU1u057CGNSOUtRcyYzfL2HJoaUIljVR7fRcasoUbvg1TH4bF8cho7rDbT38pB0Bi8PQCejO5vvNy4dHSNENETw7PDeuTTAr2Nfx2-qklyWavXpStXs4urDuVipz_dztUnqJozR5-z-s-A_Q7-ohQ</recordid><startdate>20080205</startdate><enddate>20080205</enddate><creator>Furukawa, Kazuaki</creator><creator>Nakashima, Hiroshi</creator><creator>Kashimura, Yoshiaki</creator><creator>Torimitsu, Keiichi</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20080205</creationdate><title>Novel “Lipid-Flow Chip” Configuration to Determine Donor-to-Acceptor Ratio-Dependent Fluorescence Resonance Energy Transfer Efficiency</title><author>Furukawa, Kazuaki ; Nakashima, Hiroshi ; Kashimura, Yoshiaki ; Torimitsu, Keiichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a447t-f42f623ab2135af8009c621e77a279694c13500b84bfd554ff7a209896586ed13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Diffusion</topic><topic>Exact sciences and technology</topic><topic>Fluorescence Resonance Energy Transfer - instrumentation</topic><topic>Fluorescence Resonance Energy Transfer - methods</topic><topic>Fluorescence Resonance Energy Transfer - statistics &amp; numerical data</topic><topic>Fluorescent Dyes</topic><topic>General and physical chemistry</topic><topic>Lipid Bilayers - chemistry</topic><topic>Microfluidic Analytical Techniques</topic><topic>Microscopy, Confocal</topic><topic>Oxadiazoles</topic><topic>Surface physical chemistry</topic><topic>Xanthenes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Furukawa, Kazuaki</creatorcontrib><creatorcontrib>Nakashima, Hiroshi</creatorcontrib><creatorcontrib>Kashimura, Yoshiaki</creatorcontrib><creatorcontrib>Torimitsu, Keiichi</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Furukawa, Kazuaki</au><au>Nakashima, Hiroshi</au><au>Kashimura, Yoshiaki</au><au>Torimitsu, Keiichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Novel “Lipid-Flow Chip” Configuration to Determine Donor-to-Acceptor Ratio-Dependent Fluorescence Resonance Energy Transfer Efficiency</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2008-02-05</date><risdate>2008</risdate><volume>24</volume><issue>3</issue><spage>921</spage><epage>926</epage><pages>921-926</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>We report on the determination of fluorescence resonance energy transfer (FRET) efficiency, which is dependent on the donor-to-acceptor (D−A) ratio, by using a new type of microchannel device called a “lipid-flow chip”. The chip comprises two supported lipid bilayers (SLBs) that self-spread from either side of 10 μm wide straight lines and carry molecules embedded in them. We first show that the diffusion process that occurs when the two SLBs collide with each other in the channel and form a unified SLB can be expressed by a one-dimensional diffusion equation. Next we describe a method for determining the FRET efficiency between NBD (donor) and Texas Red (acceptor) from observations using the lipid-flow chip by employing a one-dimensional diffusion model. The advantages of our method are that all the D−A ratios are achieved in one chip, and a large number of data are recorded in one chip. The FRET efficiency varies depending on the D−A ratio under conditions whereby the concentration of the sum of the donors and acceptors is constant. The Förster radius is also estimated from our results using a known model describing two-dimensional FRET systems, which yields a radius consistent with the previously reported value for NBD and Texas Red.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>18154312</pmid><doi>10.1021/la702695f</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2008-02, Vol.24 (3), p.921-926
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_70248327
source MEDLINE; American Chemical Society Web Editions
subjects Chemistry
Colloidal state and disperse state
Diffusion
Exact sciences and technology
Fluorescence Resonance Energy Transfer - instrumentation
Fluorescence Resonance Energy Transfer - methods
Fluorescence Resonance Energy Transfer - statistics & numerical data
Fluorescent Dyes
General and physical chemistry
Lipid Bilayers - chemistry
Microfluidic Analytical Techniques
Microscopy, Confocal
Oxadiazoles
Surface physical chemistry
Xanthenes
title Novel “Lipid-Flow Chip” Configuration to Determine Donor-to-Acceptor Ratio-Dependent Fluorescence Resonance Energy Transfer Efficiency
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T15%3A23%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Novel%20%E2%80%9CLipid-Flow%20Chip%E2%80%9D%20Configuration%20to%20Determine%20Donor-to-Acceptor%20Ratio-Dependent%20Fluorescence%20Resonance%20Energy%20Transfer%20Efficiency&rft.jtitle=Langmuir&rft.au=Furukawa,%20Kazuaki&rft.date=2008-02-05&rft.volume=24&rft.issue=3&rft.spage=921&rft.epage=926&rft.pages=921-926&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la702695f&rft_dat=%3Cproquest_cross%3E70248327%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70248327&rft_id=info:pmid/18154312&rfr_iscdi=true