Embryonic and Postnatal Development of the Layer I–Directed (“Matrix”) Thalamocortical System in the Rat

Inputs to the layer I apical dendritic tufts of pyramidal cells are crucial in “top-down” interactions in the cerebral cortex. A large population of thalamocortical cells, the “matrix” (M-type) cells, provides a direct robust input to layer I that is anatomically and functionally different from the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cerebral cortex (New York, N.Y. 1991) N.Y. 1991), 2008-02, Vol.18 (2), p.344-363
Hauptverfasser: Galazo, Maria J., Martinez-Cerdeño, Verónica, Porrero, César, Clascá, Francisco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Inputs to the layer I apical dendritic tufts of pyramidal cells are crucial in “top-down” interactions in the cerebral cortex. A large population of thalamocortical cells, the “matrix” (M-type) cells, provides a direct robust input to layer I that is anatomically and functionally different from the thalamocortical input to layer VI. The developmental timecourse of M-type axons is examined here in rats aged E (embryonic day) 16 to P (postnatal day) 30. Anterograde techniques were used to label axons arising from 2 thalamic nuclei mainly made up of M-type cells, the Posterior and the Ventromedial. The primary growth cones of M-type axons rapidly reached the subplate of dorsally situated cortical areas. After this, interstitial branches would sprout from these axons under more lateral cortical regions to invade the overlying cortical plate forming secondary arbors. Moreover, retrograde labeling of M-type cell somata in the thalamus after tracer deposits confined to layer I revealed that large numbers of axons from multiple thalamic nuclei had already converged in a given spot of layer I by P3. Because of early ingrowth in such large numbers, interactions of M-type axons may significantly influence the early development of cortical circuits.
ISSN:1047-3211
1460-2199
DOI:10.1093/cercor/bhm059