Experimental validation of a time-domain-based wave propagation model of blood flow in viscoelastic vessels
Abstract Time-domain-based one-dimensional wave propagation models of the arterial system are preferable over one-dimensional wave propagation models in the frequency domain since the latter neglect the non-linear convection forces present in the physiological situation, especially when the vessel i...
Gespeichert in:
Veröffentlicht in: | Journal of biomechanics 2008-01, Vol.41 (2), p.284-291 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 291 |
---|---|
container_issue | 2 |
container_start_page | 284 |
container_title | Journal of biomechanics |
container_volume | 41 |
creator | Bessems, David Giannopapa, Christina G Rutten, Marcel C.M van de Vosse, Frans N |
description | Abstract Time-domain-based one-dimensional wave propagation models of the arterial system are preferable over one-dimensional wave propagation models in the frequency domain since the latter neglect the non-linear convection forces present in the physiological situation, especially when the vessel is tapered. Moreover, one-dimensional wave propagation models of the arterial system can be used to provide boundary conditions for fully three-dimensional fluid–structure interaction computations that are usually defined in the time domain. In this study, a time-domain-based one-dimensional wave propagation model in a cross-sectional area, flow and pressure ( A , q , p ) -formulation is developed. Using this formulation, a constitutive law that includes viscoelasticity based on the mechanical behaviour of a Kelvin body, is introduced. The resulting pressure and flow waves travelling through a straight and tapered vessel are compared to experimental data obtained from measurements in an in vitro setup. The model presented shows to be well suited to predict wave propagation through these straight and tapered vessels with viscoelastic wall properties and hereto can serve as a time-domain-based method to model wave propagation in the human arterial system. |
doi_str_mv | 10.1016/j.jbiomech.2007.09.014 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70213092</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0021929007003922</els_id><sourcerecordid>70213092</sourcerecordid><originalsourceid>FETCH-LOGICAL-c515t-9b2b0842381b9166f5c17634b99c3fbf983ec1169ee727f5fab8e56cfcc82d03</originalsourceid><addsrcrecordid>eNqFkk9v1DAQxS0EokvhK1SWkLgljO388wWBqkIrVeJA75btjMGpEy9xNqXfHke7qFIvnHyY34zfvDeEXDAoGbDm41AOxscR7a-SA7QlyBJY9YLsWNeKgosOXpIdAGeF5BLOyJuUBshg1crX5Ix1IFhbw47cX_3Z4-xHnBYd6KqD7_Xi40Sjo5ouuVD0cdR-KoxO2NMHvSLdz3Gvfx65MfYYNtqEGHvqQnygfqKrTzZi0Gnxlq6YEob0lrxyOiR8d3rPyd3Xq7vL6-L2-7ebyy-3ha1ZvRTScANdlXdgRrKmcbVlbSMqI6UVzjjZCbSMNRKx5a2rnTYd1o111na8B3FOPhzHZpm_D5gWNWYxGIKeMB6SarMrAiTP4Ptn4BAP85SlKQaikgIEdJlqjpSdY0ozOrXPfun5MUNqy0IN6l8WastCgVQ5i9x4cRp_MCP2T20n8zPw-Qhkb3D1OKtkPU4Wez-jXVQf_f__-PRshA1-8laHe3zE9LSPSlyB-rFdxHYQ0AIIybn4C_Khs6o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1034930308</pqid></control><display><type>article</type><title>Experimental validation of a time-domain-based wave propagation model of blood flow in viscoelastic vessels</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Bessems, David ; Giannopapa, Christina G ; Rutten, Marcel C.M ; van de Vosse, Frans N</creator><creatorcontrib>Bessems, David ; Giannopapa, Christina G ; Rutten, Marcel C.M ; van de Vosse, Frans N</creatorcontrib><description>Abstract Time-domain-based one-dimensional wave propagation models of the arterial system are preferable over one-dimensional wave propagation models in the frequency domain since the latter neglect the non-linear convection forces present in the physiological situation, especially when the vessel is tapered. Moreover, one-dimensional wave propagation models of the arterial system can be used to provide boundary conditions for fully three-dimensional fluid–structure interaction computations that are usually defined in the time domain. In this study, a time-domain-based one-dimensional wave propagation model in a cross-sectional area, flow and pressure ( A , q , p ) -formulation is developed. Using this formulation, a constitutive law that includes viscoelasticity based on the mechanical behaviour of a Kelvin body, is introduced. The resulting pressure and flow waves travelling through a straight and tapered vessel are compared to experimental data obtained from measurements in an in vitro setup. The model presented shows to be well suited to predict wave propagation through these straight and tapered vessels with viscoelastic wall properties and hereto can serve as a time-domain-based method to model wave propagation in the human arterial system.</description><identifier>ISSN: 0021-9290</identifier><identifier>EISSN: 1873-2380</identifier><identifier>DOI: 10.1016/j.jbiomech.2007.09.014</identifier><identifier>PMID: 18031750</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Algorithms ; Animals ; Arteries - physiology ; Artery ; Blood Flow Velocity - physiology ; Blood Pressure - physiology ; Computer Simulation ; Elasticity ; Humans ; Models, Cardiovascular ; Numerical analysis ; Partial differential equations ; Physical Medicine and Rehabilitation ; Pneumatics ; Propagation ; Viscoelastic ; Viscoelasticity ; Viscosity ; Wave propagation</subject><ispartof>Journal of biomechanics, 2008-01, Vol.41 (2), p.284-291</ispartof><rights>Elsevier Ltd</rights><rights>2007 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c515t-9b2b0842381b9166f5c17634b99c3fbf983ec1169ee727f5fab8e56cfcc82d03</citedby><cites>FETCH-LOGICAL-c515t-9b2b0842381b9166f5c17634b99c3fbf983ec1169ee727f5fab8e56cfcc82d03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021929007003922$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18031750$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bessems, David</creatorcontrib><creatorcontrib>Giannopapa, Christina G</creatorcontrib><creatorcontrib>Rutten, Marcel C.M</creatorcontrib><creatorcontrib>van de Vosse, Frans N</creatorcontrib><title>Experimental validation of a time-domain-based wave propagation model of blood flow in viscoelastic vessels</title><title>Journal of biomechanics</title><addtitle>J Biomech</addtitle><description>Abstract Time-domain-based one-dimensional wave propagation models of the arterial system are preferable over one-dimensional wave propagation models in the frequency domain since the latter neglect the non-linear convection forces present in the physiological situation, especially when the vessel is tapered. Moreover, one-dimensional wave propagation models of the arterial system can be used to provide boundary conditions for fully three-dimensional fluid–structure interaction computations that are usually defined in the time domain. In this study, a time-domain-based one-dimensional wave propagation model in a cross-sectional area, flow and pressure ( A , q , p ) -formulation is developed. Using this formulation, a constitutive law that includes viscoelasticity based on the mechanical behaviour of a Kelvin body, is introduced. The resulting pressure and flow waves travelling through a straight and tapered vessel are compared to experimental data obtained from measurements in an in vitro setup. The model presented shows to be well suited to predict wave propagation through these straight and tapered vessels with viscoelastic wall properties and hereto can serve as a time-domain-based method to model wave propagation in the human arterial system.</description><subject>Algorithms</subject><subject>Animals</subject><subject>Arteries - physiology</subject><subject>Artery</subject><subject>Blood Flow Velocity - physiology</subject><subject>Blood Pressure - physiology</subject><subject>Computer Simulation</subject><subject>Elasticity</subject><subject>Humans</subject><subject>Models, Cardiovascular</subject><subject>Numerical analysis</subject><subject>Partial differential equations</subject><subject>Physical Medicine and Rehabilitation</subject><subject>Pneumatics</subject><subject>Propagation</subject><subject>Viscoelastic</subject><subject>Viscoelasticity</subject><subject>Viscosity</subject><subject>Wave propagation</subject><issn>0021-9290</issn><issn>1873-2380</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkk9v1DAQxS0EokvhK1SWkLgljO388wWBqkIrVeJA75btjMGpEy9xNqXfHke7qFIvnHyY34zfvDeEXDAoGbDm41AOxscR7a-SA7QlyBJY9YLsWNeKgosOXpIdAGeF5BLOyJuUBshg1crX5Ix1IFhbw47cX_3Z4-xHnBYd6KqD7_Xi40Sjo5ouuVD0cdR-KoxO2NMHvSLdz3Gvfx65MfYYNtqEGHvqQnygfqKrTzZi0Gnxlq6YEob0lrxyOiR8d3rPyd3Xq7vL6-L2-7ebyy-3ha1ZvRTScANdlXdgRrKmcbVlbSMqI6UVzjjZCbSMNRKx5a2rnTYd1o111na8B3FOPhzHZpm_D5gWNWYxGIKeMB6SarMrAiTP4Ptn4BAP85SlKQaikgIEdJlqjpSdY0ozOrXPfun5MUNqy0IN6l8WastCgVQ5i9x4cRp_MCP2T20n8zPw-Qhkb3D1OKtkPU4Wez-jXVQf_f__-PRshA1-8laHe3zE9LSPSlyB-rFdxHYQ0AIIybn4C_Khs6o</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Bessems, David</creator><creator>Giannopapa, Christina G</creator><creator>Rutten, Marcel C.M</creator><creator>van de Vosse, Frans N</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TB</scope><scope>7TS</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20080101</creationdate><title>Experimental validation of a time-domain-based wave propagation model of blood flow in viscoelastic vessels</title><author>Bessems, David ; Giannopapa, Christina G ; Rutten, Marcel C.M ; van de Vosse, Frans N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c515t-9b2b0842381b9166f5c17634b99c3fbf983ec1169ee727f5fab8e56cfcc82d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>Arteries - physiology</topic><topic>Artery</topic><topic>Blood Flow Velocity - physiology</topic><topic>Blood Pressure - physiology</topic><topic>Computer Simulation</topic><topic>Elasticity</topic><topic>Humans</topic><topic>Models, Cardiovascular</topic><topic>Numerical analysis</topic><topic>Partial differential equations</topic><topic>Physical Medicine and Rehabilitation</topic><topic>Pneumatics</topic><topic>Propagation</topic><topic>Viscoelastic</topic><topic>Viscoelasticity</topic><topic>Viscosity</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bessems, David</creatorcontrib><creatorcontrib>Giannopapa, Christina G</creatorcontrib><creatorcontrib>Rutten, Marcel C.M</creatorcontrib><creatorcontrib>van de Vosse, Frans N</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bessems, David</au><au>Giannopapa, Christina G</au><au>Rutten, Marcel C.M</au><au>van de Vosse, Frans N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental validation of a time-domain-based wave propagation model of blood flow in viscoelastic vessels</atitle><jtitle>Journal of biomechanics</jtitle><addtitle>J Biomech</addtitle><date>2008-01-01</date><risdate>2008</risdate><volume>41</volume><issue>2</issue><spage>284</spage><epage>291</epage><pages>284-291</pages><issn>0021-9290</issn><eissn>1873-2380</eissn><abstract>Abstract Time-domain-based one-dimensional wave propagation models of the arterial system are preferable over one-dimensional wave propagation models in the frequency domain since the latter neglect the non-linear convection forces present in the physiological situation, especially when the vessel is tapered. Moreover, one-dimensional wave propagation models of the arterial system can be used to provide boundary conditions for fully three-dimensional fluid–structure interaction computations that are usually defined in the time domain. In this study, a time-domain-based one-dimensional wave propagation model in a cross-sectional area, flow and pressure ( A , q , p ) -formulation is developed. Using this formulation, a constitutive law that includes viscoelasticity based on the mechanical behaviour of a Kelvin body, is introduced. The resulting pressure and flow waves travelling through a straight and tapered vessel are compared to experimental data obtained from measurements in an in vitro setup. The model presented shows to be well suited to predict wave propagation through these straight and tapered vessels with viscoelastic wall properties and hereto can serve as a time-domain-based method to model wave propagation in the human arterial system.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>18031750</pmid><doi>10.1016/j.jbiomech.2007.09.014</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9290 |
ispartof | Journal of biomechanics, 2008-01, Vol.41 (2), p.284-291 |
issn | 0021-9290 1873-2380 |
language | eng |
recordid | cdi_proquest_miscellaneous_70213092 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Algorithms Animals Arteries - physiology Artery Blood Flow Velocity - physiology Blood Pressure - physiology Computer Simulation Elasticity Humans Models, Cardiovascular Numerical analysis Partial differential equations Physical Medicine and Rehabilitation Pneumatics Propagation Viscoelastic Viscoelasticity Viscosity Wave propagation |
title | Experimental validation of a time-domain-based wave propagation model of blood flow in viscoelastic vessels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T20%3A55%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20validation%20of%20a%20time-domain-based%20wave%20propagation%20model%20of%20blood%20flow%20in%20viscoelastic%20vessels&rft.jtitle=Journal%20of%20biomechanics&rft.au=Bessems,%20David&rft.date=2008-01-01&rft.volume=41&rft.issue=2&rft.spage=284&rft.epage=291&rft.pages=284-291&rft.issn=0021-9290&rft.eissn=1873-2380&rft_id=info:doi/10.1016/j.jbiomech.2007.09.014&rft_dat=%3Cproquest_cross%3E70213092%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1034930308&rft_id=info:pmid/18031750&rft_els_id=1_s2_0_S0021929007003922&rfr_iscdi=true |