Photovoltaic Charge Generation Visualized at the Nanoscale: A Proof of Principle
We report for the first time a nanoscale resolved proof of principle of the photovoltaic activity in phase-segregated electron acceptor−donor blend architectures as obtained by Kelvin probe force microscopy. The explored length scale is truly important for organic solar cells since it is comparable...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2008-01, Vol.130 (3), p.780-781 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 781 |
---|---|
container_issue | 3 |
container_start_page | 780 |
container_title | Journal of the American Chemical Society |
container_volume | 130 |
creator | Liscio, Andrea De Luca, Giovanna Nolde, Fabian Palermo, Vincenzo Müllen, Klaus Samorì, Paolo |
description | We report for the first time a nanoscale resolved proof of principle of the photovoltaic activity in phase-segregated electron acceptor−donor blend architectures as obtained by Kelvin probe force microscopy. The explored length scale is truly important for organic solar cells since it is comparable to the mean exciton diffusion length. We chose a blend of regioregular poly(3-hexylthiophene) (P3HT) and N,N‘-bis(1-ethylpropyl)-3,4:9,10-perylenebis(dicarboximide) (PDI) as model systems, acting as electron donor and electron acceptor, respectively. In this work, we demonstrate that the same type of molecular assemblies, obtained from a given electron-accepting material on the same sample, shows different surface potential changes upon white-light illumination when in physical contact with the donor materials or isolated from it. Although excitons are generated by light absorption in all the PDI clusters, we unambiguously proved that only the ones which are in physical contact with P3HT exhibit an appreciable charge transfer because of the existence of a complementary electron donor phase. Such a direct observation is novel and of general applicability and can also be extended to other bicomponent materials for plastic photovoltaics. |
doi_str_mv | 10.1021/ja075291r |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70208597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70208597</sourcerecordid><originalsourceid>FETCH-LOGICAL-a417t-7e876f7535d1002fd2a5f2140375f829bf86ea4ee8b30ed7acb58b3adaf824973</originalsourceid><addsrcrecordid>eNptkMtOwzAQRS0EgvJY8APIG5BYBGwnjlN2pTwlBEU8ttY0mVCXNC52goAVW36TL8HQCjZII82M7tHM1SVkk7M9zgTfHwNTUnS5WyAdLgWLJBfpIukwxkSksjReIavej8OaiIwvkxWecZnEcdwhN4ORbeyzrRowOe2PwD0gPcUaHTTG1vTe-BYq84YFhYY2I6SXUFufQ4UHn-8ftEcHztqShho4U-dmWuE6WSqh8rgx72vk7uT4tn8WXVydnvd7FxEkXDWRwkylpZKxLHgwWhYCZCl4wmIly0x0h2WWIiSI2TBmWCjIhzKMUEBQk66K18jO7O7U2acWfaMnxudYVVCjbb1WTLBM_oC7MzB31nuHpZ46MwH3qjnT3wnq3wQDuzU_2g4nWPyR88gCEM0A4xt8-dXBPepUBev6dnCjjxJ1xPjhib4O_PaMh9zrsW1dHTL55_EX3GmG1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70208597</pqid></control><display><type>article</type><title>Photovoltaic Charge Generation Visualized at the Nanoscale: A Proof of Principle</title><source>American Chemical Society Journals</source><creator>Liscio, Andrea ; De Luca, Giovanna ; Nolde, Fabian ; Palermo, Vincenzo ; Müllen, Klaus ; Samorì, Paolo</creator><creatorcontrib>Liscio, Andrea ; De Luca, Giovanna ; Nolde, Fabian ; Palermo, Vincenzo ; Müllen, Klaus ; Samorì, Paolo</creatorcontrib><description>We report for the first time a nanoscale resolved proof of principle of the photovoltaic activity in phase-segregated electron acceptor−donor blend architectures as obtained by Kelvin probe force microscopy. The explored length scale is truly important for organic solar cells since it is comparable to the mean exciton diffusion length. We chose a blend of regioregular poly(3-hexylthiophene) (P3HT) and N,N‘-bis(1-ethylpropyl)-3,4:9,10-perylenebis(dicarboximide) (PDI) as model systems, acting as electron donor and electron acceptor, respectively. In this work, we demonstrate that the same type of molecular assemblies, obtained from a given electron-accepting material on the same sample, shows different surface potential changes upon white-light illumination when in physical contact with the donor materials or isolated from it. Although excitons are generated by light absorption in all the PDI clusters, we unambiguously proved that only the ones which are in physical contact with P3HT exhibit an appreciable charge transfer because of the existence of a complementary electron donor phase. Such a direct observation is novel and of general applicability and can also be extended to other bicomponent materials for plastic photovoltaics.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja075291r</identifier><identifier>PMID: 18154333</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2008-01, Vol.130 (3), p.780-781</ispartof><rights>Copyright © 2008 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a417t-7e876f7535d1002fd2a5f2140375f829bf86ea4ee8b30ed7acb58b3adaf824973</citedby><cites>FETCH-LOGICAL-a417t-7e876f7535d1002fd2a5f2140375f829bf86ea4ee8b30ed7acb58b3adaf824973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja075291r$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja075291r$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18154333$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liscio, Andrea</creatorcontrib><creatorcontrib>De Luca, Giovanna</creatorcontrib><creatorcontrib>Nolde, Fabian</creatorcontrib><creatorcontrib>Palermo, Vincenzo</creatorcontrib><creatorcontrib>Müllen, Klaus</creatorcontrib><creatorcontrib>Samorì, Paolo</creatorcontrib><title>Photovoltaic Charge Generation Visualized at the Nanoscale: A Proof of Principle</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>We report for the first time a nanoscale resolved proof of principle of the photovoltaic activity in phase-segregated electron acceptor−donor blend architectures as obtained by Kelvin probe force microscopy. The explored length scale is truly important for organic solar cells since it is comparable to the mean exciton diffusion length. We chose a blend of regioregular poly(3-hexylthiophene) (P3HT) and N,N‘-bis(1-ethylpropyl)-3,4:9,10-perylenebis(dicarboximide) (PDI) as model systems, acting as electron donor and electron acceptor, respectively. In this work, we demonstrate that the same type of molecular assemblies, obtained from a given electron-accepting material on the same sample, shows different surface potential changes upon white-light illumination when in physical contact with the donor materials or isolated from it. Although excitons are generated by light absorption in all the PDI clusters, we unambiguously proved that only the ones which are in physical contact with P3HT exhibit an appreciable charge transfer because of the existence of a complementary electron donor phase. Such a direct observation is novel and of general applicability and can also be extended to other bicomponent materials for plastic photovoltaics.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNptkMtOwzAQRS0EgvJY8APIG5BYBGwnjlN2pTwlBEU8ttY0mVCXNC52goAVW36TL8HQCjZII82M7tHM1SVkk7M9zgTfHwNTUnS5WyAdLgWLJBfpIukwxkSksjReIavej8OaiIwvkxWecZnEcdwhN4ORbeyzrRowOe2PwD0gPcUaHTTG1vTe-BYq84YFhYY2I6SXUFufQ4UHn-8ftEcHztqShho4U-dmWuE6WSqh8rgx72vk7uT4tn8WXVydnvd7FxEkXDWRwkylpZKxLHgwWhYCZCl4wmIly0x0h2WWIiSI2TBmWCjIhzKMUEBQk66K18jO7O7U2acWfaMnxudYVVCjbb1WTLBM_oC7MzB31nuHpZ46MwH3qjnT3wnq3wQDuzU_2g4nWPyR88gCEM0A4xt8-dXBPepUBev6dnCjjxJ1xPjhib4O_PaMh9zrsW1dHTL55_EX3GmG1A</recordid><startdate>20080123</startdate><enddate>20080123</enddate><creator>Liscio, Andrea</creator><creator>De Luca, Giovanna</creator><creator>Nolde, Fabian</creator><creator>Palermo, Vincenzo</creator><creator>Müllen, Klaus</creator><creator>Samorì, Paolo</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20080123</creationdate><title>Photovoltaic Charge Generation Visualized at the Nanoscale: A Proof of Principle</title><author>Liscio, Andrea ; De Luca, Giovanna ; Nolde, Fabian ; Palermo, Vincenzo ; Müllen, Klaus ; Samorì, Paolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a417t-7e876f7535d1002fd2a5f2140375f829bf86ea4ee8b30ed7acb58b3adaf824973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liscio, Andrea</creatorcontrib><creatorcontrib>De Luca, Giovanna</creatorcontrib><creatorcontrib>Nolde, Fabian</creatorcontrib><creatorcontrib>Palermo, Vincenzo</creatorcontrib><creatorcontrib>Müllen, Klaus</creatorcontrib><creatorcontrib>Samorì, Paolo</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liscio, Andrea</au><au>De Luca, Giovanna</au><au>Nolde, Fabian</au><au>Palermo, Vincenzo</au><au>Müllen, Klaus</au><au>Samorì, Paolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photovoltaic Charge Generation Visualized at the Nanoscale: A Proof of Principle</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2008-01-23</date><risdate>2008</risdate><volume>130</volume><issue>3</issue><spage>780</spage><epage>781</epage><pages>780-781</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>We report for the first time a nanoscale resolved proof of principle of the photovoltaic activity in phase-segregated electron acceptor−donor blend architectures as obtained by Kelvin probe force microscopy. The explored length scale is truly important for organic solar cells since it is comparable to the mean exciton diffusion length. We chose a blend of regioregular poly(3-hexylthiophene) (P3HT) and N,N‘-bis(1-ethylpropyl)-3,4:9,10-perylenebis(dicarboximide) (PDI) as model systems, acting as electron donor and electron acceptor, respectively. In this work, we demonstrate that the same type of molecular assemblies, obtained from a given electron-accepting material on the same sample, shows different surface potential changes upon white-light illumination when in physical contact with the donor materials or isolated from it. Although excitons are generated by light absorption in all the PDI clusters, we unambiguously proved that only the ones which are in physical contact with P3HT exhibit an appreciable charge transfer because of the existence of a complementary electron donor phase. Such a direct observation is novel and of general applicability and can also be extended to other bicomponent materials for plastic photovoltaics.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>18154333</pmid><doi>10.1021/ja075291r</doi><tpages>2</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-7863 |
ispartof | Journal of the American Chemical Society, 2008-01, Vol.130 (3), p.780-781 |
issn | 0002-7863 1520-5126 |
language | eng |
recordid | cdi_proquest_miscellaneous_70208597 |
source | American Chemical Society Journals |
title | Photovoltaic Charge Generation Visualized at the Nanoscale: A Proof of Principle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T13%3A26%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photovoltaic%20Charge%20Generation%20Visualized%20at%20the%20Nanoscale:%E2%80%89%20A%20Proof%20of%20Principle&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Liscio,%20Andrea&rft.date=2008-01-23&rft.volume=130&rft.issue=3&rft.spage=780&rft.epage=781&rft.pages=780-781&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja075291r&rft_dat=%3Cproquest_cross%3E70208597%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70208597&rft_id=info:pmid/18154333&rfr_iscdi=true |