Electrospinning of collagen nanofibers: Effects on the behavior of normal human keratinocytes and early-stage wound healing

Electrospinning of type I collagen in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) to fabricate a biomimetic nanofibrous extracellular matrix for tissue engineering was investigated. The average diameter of collagen nanofibers electrospun from 8% collagen solution in HFIP was 460 nm (range of 100–1200 n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2006-03, Vol.27 (8), p.1452-1461
Hauptverfasser: Rho, Kyong Su, Jeong, Lim, Lee, Gene, Seo, Byoung-Moo, Park, Yoon Jeong, Hong, Seong-Doo, Roh, Sangho, Cho, Jae Jin, Park, Won Ho, Min, Byung-Moo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1461
container_issue 8
container_start_page 1452
container_title Biomaterials
container_volume 27
creator Rho, Kyong Su
Jeong, Lim
Lee, Gene
Seo, Byoung-Moo
Park, Yoon Jeong
Hong, Seong-Doo
Roh, Sangho
Cho, Jae Jin
Park, Won Ho
Min, Byung-Moo
description Electrospinning of type I collagen in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) to fabricate a biomimetic nanofibrous extracellular matrix for tissue engineering was investigated. The average diameter of collagen nanofibers electrospun from 8% collagen solution in HFIP was 460 nm (range of 100–1200 nm). The as-spun collagen nanofibrous matrix was chemically cross-linked by glutaraldehyde vapor with a saturated aqueous solution and then treated with aqueous 0.1 m glycine to block unreacted aldehyde groups. With vapor phase cross-linking for 12 h, porosity of the collagen matrix decreased from 89% to 71%. The collagen nanofibrous matrix showed good tensile strength, even in aqueous solution. Effects on cytocompatibility, cell behavior, cell and collagen nanofiber interactions, and open wound healing in rats were examined. Relatively low cell adhesion was observed on uncoated collagen nanofibers, whereas collagen nanofibrous matrices treated with type I collagen or laminin were functionally active in responses in normal human keratinocytes. Collagen nanofibrous matrices were very effective as wound-healing accelerators in early-stage wound healing. Our results indicate that cross-linked collagen nanofibers coated with ECM proteins, particularly type I collagen, may be a good candidate for biomedical applications, such as wound dressing and scaffolds for tissue engineering.
doi_str_mv 10.1016/j.biomaterials.2005.08.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70195760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961205007921</els_id><sourcerecordid>70195760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c506t-79b7da1bce59d1997ba0d8d5f6e77a4d43a5a92f1fc79b716ca0d5bbd0bab6443</originalsourceid><addsrcrecordid>eNqNkU2PFCEQhonRuOPqXzDEg7duoRuaZm9mHT-STbzomfBR7DB2wwjdayb-eZnMJHpbTwR4qt5UPQi9oaSlhA7v9q0JadYL5KCn0naE8JaMLSHsCdrQUYwNl4Q_RRtCWdfIgXZX6EUpe1LvhHXP0RUdKOt7STbo93YCu-RUDiHGEO9x8timadL3EHHUMflgIJcbvPW-ggWniJcdYAM7_RBSPvEx5VlPeLfOOuIfkPUSYrLHBQrW0WHQeTo2Zakt8a-01pcd6KlmvUTPfB0AXl3Oa_T94_bb7efm7uunL7fv7xrLybA0QhrhNDUWuHRUSmE0caPjfgAhNHOs11zLzlNvTygdbP3nxjhitBkY66_R23PfQ04_VyiLmkOxUIeMkNaiBKGSi4E8CnaS9kJI_ihIJWNC9kMFb86grSsuGbw65DDrfFSUqJNMtVf_ylQnmYqMqsqsxa8vKauZwf0tvdirwIczAHV7DwGyKjZAtOBCrrKUS-F_cv4A8Ia6lg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19447936</pqid></control><display><type>article</type><title>Electrospinning of collagen nanofibers: Effects on the behavior of normal human keratinocytes and early-stage wound healing</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Rho, Kyong Su ; Jeong, Lim ; Lee, Gene ; Seo, Byoung-Moo ; Park, Yoon Jeong ; Hong, Seong-Doo ; Roh, Sangho ; Cho, Jae Jin ; Park, Won Ho ; Min, Byung-Moo</creator><creatorcontrib>Rho, Kyong Su ; Jeong, Lim ; Lee, Gene ; Seo, Byoung-Moo ; Park, Yoon Jeong ; Hong, Seong-Doo ; Roh, Sangho ; Cho, Jae Jin ; Park, Won Ho ; Min, Byung-Moo</creatorcontrib><description>Electrospinning of type I collagen in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) to fabricate a biomimetic nanofibrous extracellular matrix for tissue engineering was investigated. The average diameter of collagen nanofibers electrospun from 8% collagen solution in HFIP was 460 nm (range of 100–1200 nm). The as-spun collagen nanofibrous matrix was chemically cross-linked by glutaraldehyde vapor with a saturated aqueous solution and then treated with aqueous 0.1 m glycine to block unreacted aldehyde groups. With vapor phase cross-linking for 12 h, porosity of the collagen matrix decreased from 89% to 71%. The collagen nanofibrous matrix showed good tensile strength, even in aqueous solution. Effects on cytocompatibility, cell behavior, cell and collagen nanofiber interactions, and open wound healing in rats were examined. Relatively low cell adhesion was observed on uncoated collagen nanofibers, whereas collagen nanofibrous matrices treated with type I collagen or laminin were functionally active in responses in normal human keratinocytes. Collagen nanofibrous matrices were very effective as wound-healing accelerators in early-stage wound healing. Our results indicate that cross-linked collagen nanofibers coated with ECM proteins, particularly type I collagen, may be a good candidate for biomedical applications, such as wound dressing and scaffolds for tissue engineering.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2005.08.004</identifier><identifier>PMID: 16143390</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Adult ; Animals ; Biocompatible Materials ; Cell Adhesion - physiology ; Cell behavior ; Cell Movement - physiology ; Cells, Cultured ; Collagen nanofibers ; Collagen Type I ; Electrospinning ; Extracellular Matrix ; Extracellular matrix protein ; Humans ; Keratinocytes - physiology ; Microscopy, Electron, Scanning ; Nanostructures ; Nanotechnology - methods ; Rats ; Rats, Sprague-Dawley ; Skin - injuries ; Skin - pathology ; Wound healing ; Wound Healing - physiology</subject><ispartof>Biomaterials, 2006-03, Vol.27 (8), p.1452-1461</ispartof><rights>2005 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c506t-79b7da1bce59d1997ba0d8d5f6e77a4d43a5a92f1fc79b716ca0d5bbd0bab6443</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142961205007921$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16143390$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rho, Kyong Su</creatorcontrib><creatorcontrib>Jeong, Lim</creatorcontrib><creatorcontrib>Lee, Gene</creatorcontrib><creatorcontrib>Seo, Byoung-Moo</creatorcontrib><creatorcontrib>Park, Yoon Jeong</creatorcontrib><creatorcontrib>Hong, Seong-Doo</creatorcontrib><creatorcontrib>Roh, Sangho</creatorcontrib><creatorcontrib>Cho, Jae Jin</creatorcontrib><creatorcontrib>Park, Won Ho</creatorcontrib><creatorcontrib>Min, Byung-Moo</creatorcontrib><title>Electrospinning of collagen nanofibers: Effects on the behavior of normal human keratinocytes and early-stage wound healing</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Electrospinning of type I collagen in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) to fabricate a biomimetic nanofibrous extracellular matrix for tissue engineering was investigated. The average diameter of collagen nanofibers electrospun from 8% collagen solution in HFIP was 460 nm (range of 100–1200 nm). The as-spun collagen nanofibrous matrix was chemically cross-linked by glutaraldehyde vapor with a saturated aqueous solution and then treated with aqueous 0.1 m glycine to block unreacted aldehyde groups. With vapor phase cross-linking for 12 h, porosity of the collagen matrix decreased from 89% to 71%. The collagen nanofibrous matrix showed good tensile strength, even in aqueous solution. Effects on cytocompatibility, cell behavior, cell and collagen nanofiber interactions, and open wound healing in rats were examined. Relatively low cell adhesion was observed on uncoated collagen nanofibers, whereas collagen nanofibrous matrices treated with type I collagen or laminin were functionally active in responses in normal human keratinocytes. Collagen nanofibrous matrices were very effective as wound-healing accelerators in early-stage wound healing. Our results indicate that cross-linked collagen nanofibers coated with ECM proteins, particularly type I collagen, may be a good candidate for biomedical applications, such as wound dressing and scaffolds for tissue engineering.</description><subject>Adult</subject><subject>Animals</subject><subject>Biocompatible Materials</subject><subject>Cell Adhesion - physiology</subject><subject>Cell behavior</subject><subject>Cell Movement - physiology</subject><subject>Cells, Cultured</subject><subject>Collagen nanofibers</subject><subject>Collagen Type I</subject><subject>Electrospinning</subject><subject>Extracellular Matrix</subject><subject>Extracellular matrix protein</subject><subject>Humans</subject><subject>Keratinocytes - physiology</subject><subject>Microscopy, Electron, Scanning</subject><subject>Nanostructures</subject><subject>Nanotechnology - methods</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Skin - injuries</subject><subject>Skin - pathology</subject><subject>Wound healing</subject><subject>Wound Healing - physiology</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU2PFCEQhonRuOPqXzDEg7duoRuaZm9mHT-STbzomfBR7DB2wwjdayb-eZnMJHpbTwR4qt5UPQi9oaSlhA7v9q0JadYL5KCn0naE8JaMLSHsCdrQUYwNl4Q_RRtCWdfIgXZX6EUpe1LvhHXP0RUdKOt7STbo93YCu-RUDiHGEO9x8timadL3EHHUMflgIJcbvPW-ggWniJcdYAM7_RBSPvEx5VlPeLfOOuIfkPUSYrLHBQrW0WHQeTo2Zakt8a-01pcd6KlmvUTPfB0AXl3Oa_T94_bb7efm7uunL7fv7xrLybA0QhrhNDUWuHRUSmE0caPjfgAhNHOs11zLzlNvTygdbP3nxjhitBkY66_R23PfQ04_VyiLmkOxUIeMkNaiBKGSi4E8CnaS9kJI_ihIJWNC9kMFb86grSsuGbw65DDrfFSUqJNMtVf_ylQnmYqMqsqsxa8vKauZwf0tvdirwIczAHV7DwGyKjZAtOBCrrKUS-F_cv4A8Ia6lg</recordid><startdate>20060301</startdate><enddate>20060301</enddate><creator>Rho, Kyong Su</creator><creator>Jeong, Lim</creator><creator>Lee, Gene</creator><creator>Seo, Byoung-Moo</creator><creator>Park, Yoon Jeong</creator><creator>Hong, Seong-Doo</creator><creator>Roh, Sangho</creator><creator>Cho, Jae Jin</creator><creator>Park, Won Ho</creator><creator>Min, Byung-Moo</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7TB</scope><scope>7U5</scope><scope>F28</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20060301</creationdate><title>Electrospinning of collagen nanofibers: Effects on the behavior of normal human keratinocytes and early-stage wound healing</title><author>Rho, Kyong Su ; Jeong, Lim ; Lee, Gene ; Seo, Byoung-Moo ; Park, Yoon Jeong ; Hong, Seong-Doo ; Roh, Sangho ; Cho, Jae Jin ; Park, Won Ho ; Min, Byung-Moo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c506t-79b7da1bce59d1997ba0d8d5f6e77a4d43a5a92f1fc79b716ca0d5bbd0bab6443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Adult</topic><topic>Animals</topic><topic>Biocompatible Materials</topic><topic>Cell Adhesion - physiology</topic><topic>Cell behavior</topic><topic>Cell Movement - physiology</topic><topic>Cells, Cultured</topic><topic>Collagen nanofibers</topic><topic>Collagen Type I</topic><topic>Electrospinning</topic><topic>Extracellular Matrix</topic><topic>Extracellular matrix protein</topic><topic>Humans</topic><topic>Keratinocytes - physiology</topic><topic>Microscopy, Electron, Scanning</topic><topic>Nanostructures</topic><topic>Nanotechnology - methods</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Skin - injuries</topic><topic>Skin - pathology</topic><topic>Wound healing</topic><topic>Wound Healing - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rho, Kyong Su</creatorcontrib><creatorcontrib>Jeong, Lim</creatorcontrib><creatorcontrib>Lee, Gene</creatorcontrib><creatorcontrib>Seo, Byoung-Moo</creatorcontrib><creatorcontrib>Park, Yoon Jeong</creatorcontrib><creatorcontrib>Hong, Seong-Doo</creatorcontrib><creatorcontrib>Roh, Sangho</creatorcontrib><creatorcontrib>Cho, Jae Jin</creatorcontrib><creatorcontrib>Park, Won Ho</creatorcontrib><creatorcontrib>Min, Byung-Moo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rho, Kyong Su</au><au>Jeong, Lim</au><au>Lee, Gene</au><au>Seo, Byoung-Moo</au><au>Park, Yoon Jeong</au><au>Hong, Seong-Doo</au><au>Roh, Sangho</au><au>Cho, Jae Jin</au><au>Park, Won Ho</au><au>Min, Byung-Moo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrospinning of collagen nanofibers: Effects on the behavior of normal human keratinocytes and early-stage wound healing</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2006-03-01</date><risdate>2006</risdate><volume>27</volume><issue>8</issue><spage>1452</spage><epage>1461</epage><pages>1452-1461</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Electrospinning of type I collagen in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) to fabricate a biomimetic nanofibrous extracellular matrix for tissue engineering was investigated. The average diameter of collagen nanofibers electrospun from 8% collagen solution in HFIP was 460 nm (range of 100–1200 nm). The as-spun collagen nanofibrous matrix was chemically cross-linked by glutaraldehyde vapor with a saturated aqueous solution and then treated with aqueous 0.1 m glycine to block unreacted aldehyde groups. With vapor phase cross-linking for 12 h, porosity of the collagen matrix decreased from 89% to 71%. The collagen nanofibrous matrix showed good tensile strength, even in aqueous solution. Effects on cytocompatibility, cell behavior, cell and collagen nanofiber interactions, and open wound healing in rats were examined. Relatively low cell adhesion was observed on uncoated collagen nanofibers, whereas collagen nanofibrous matrices treated with type I collagen or laminin were functionally active in responses in normal human keratinocytes. Collagen nanofibrous matrices were very effective as wound-healing accelerators in early-stage wound healing. Our results indicate that cross-linked collagen nanofibers coated with ECM proteins, particularly type I collagen, may be a good candidate for biomedical applications, such as wound dressing and scaffolds for tissue engineering.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>16143390</pmid><doi>10.1016/j.biomaterials.2005.08.004</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2006-03, Vol.27 (8), p.1452-1461
issn 0142-9612
1878-5905
language eng
recordid cdi_proquest_miscellaneous_70195760
source MEDLINE; Elsevier ScienceDirect Journals
subjects Adult
Animals
Biocompatible Materials
Cell Adhesion - physiology
Cell behavior
Cell Movement - physiology
Cells, Cultured
Collagen nanofibers
Collagen Type I
Electrospinning
Extracellular Matrix
Extracellular matrix protein
Humans
Keratinocytes - physiology
Microscopy, Electron, Scanning
Nanostructures
Nanotechnology - methods
Rats
Rats, Sprague-Dawley
Skin - injuries
Skin - pathology
Wound healing
Wound Healing - physiology
title Electrospinning of collagen nanofibers: Effects on the behavior of normal human keratinocytes and early-stage wound healing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A22%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrospinning%20of%20collagen%20nanofibers:%20Effects%20on%20the%20behavior%20of%20normal%20human%20keratinocytes%20and%20early-stage%20wound%20healing&rft.jtitle=Biomaterials&rft.au=Rho,%20Kyong%20Su&rft.date=2006-03-01&rft.volume=27&rft.issue=8&rft.spage=1452&rft.epage=1461&rft.pages=1452-1461&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2005.08.004&rft_dat=%3Cproquest_cross%3E70195760%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19447936&rft_id=info:pmid/16143390&rft_els_id=S0142961205007921&rfr_iscdi=true