Electrospinning of collagen nanofibers: Effects on the behavior of normal human keratinocytes and early-stage wound healing
Electrospinning of type I collagen in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) to fabricate a biomimetic nanofibrous extracellular matrix for tissue engineering was investigated. The average diameter of collagen nanofibers electrospun from 8% collagen solution in HFIP was 460 nm (range of 100–1200 n...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2006-03, Vol.27 (8), p.1452-1461 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1461 |
---|---|
container_issue | 8 |
container_start_page | 1452 |
container_title | Biomaterials |
container_volume | 27 |
creator | Rho, Kyong Su Jeong, Lim Lee, Gene Seo, Byoung-Moo Park, Yoon Jeong Hong, Seong-Doo Roh, Sangho Cho, Jae Jin Park, Won Ho Min, Byung-Moo |
description | Electrospinning of type I collagen in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) to fabricate a biomimetic nanofibrous extracellular matrix for tissue engineering was investigated. The average diameter of collagen nanofibers electrospun from 8% collagen solution in HFIP was 460
nm (range of 100–1200
nm). The as-spun collagen nanofibrous matrix was chemically cross-linked by glutaraldehyde vapor with a saturated aqueous solution and then treated with aqueous 0.1
m glycine to block unreacted aldehyde groups. With vapor phase cross-linking for 12
h, porosity of the collagen matrix decreased from 89% to 71%. The collagen nanofibrous matrix showed good tensile strength, even in aqueous solution. Effects on cytocompatibility, cell behavior, cell and collagen nanofiber interactions, and open wound healing in rats were examined. Relatively low cell adhesion was observed on uncoated collagen nanofibers, whereas collagen nanofibrous matrices treated with type I collagen or laminin were functionally active in responses in normal human keratinocytes. Collagen nanofibrous matrices were very effective as wound-healing accelerators in early-stage wound healing. Our results indicate that cross-linked collagen nanofibers coated with ECM proteins, particularly type I collagen, may be a good candidate for biomedical applications, such as wound dressing and scaffolds for tissue engineering. |
doi_str_mv | 10.1016/j.biomaterials.2005.08.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70195760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142961205007921</els_id><sourcerecordid>70195760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c506t-79b7da1bce59d1997ba0d8d5f6e77a4d43a5a92f1fc79b716ca0d5bbd0bab6443</originalsourceid><addsrcrecordid>eNqNkU2PFCEQhonRuOPqXzDEg7duoRuaZm9mHT-STbzomfBR7DB2wwjdayb-eZnMJHpbTwR4qt5UPQi9oaSlhA7v9q0JadYL5KCn0naE8JaMLSHsCdrQUYwNl4Q_RRtCWdfIgXZX6EUpe1LvhHXP0RUdKOt7STbo93YCu-RUDiHGEO9x8timadL3EHHUMflgIJcbvPW-ggWniJcdYAM7_RBSPvEx5VlPeLfOOuIfkPUSYrLHBQrW0WHQeTo2Zakt8a-01pcd6KlmvUTPfB0AXl3Oa_T94_bb7efm7uunL7fv7xrLybA0QhrhNDUWuHRUSmE0caPjfgAhNHOs11zLzlNvTygdbP3nxjhitBkY66_R23PfQ04_VyiLmkOxUIeMkNaiBKGSi4E8CnaS9kJI_ihIJWNC9kMFb86grSsuGbw65DDrfFSUqJNMtVf_ylQnmYqMqsqsxa8vKauZwf0tvdirwIczAHV7DwGyKjZAtOBCrrKUS-F_cv4A8Ia6lg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19447936</pqid></control><display><type>article</type><title>Electrospinning of collagen nanofibers: Effects on the behavior of normal human keratinocytes and early-stage wound healing</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Rho, Kyong Su ; Jeong, Lim ; Lee, Gene ; Seo, Byoung-Moo ; Park, Yoon Jeong ; Hong, Seong-Doo ; Roh, Sangho ; Cho, Jae Jin ; Park, Won Ho ; Min, Byung-Moo</creator><creatorcontrib>Rho, Kyong Su ; Jeong, Lim ; Lee, Gene ; Seo, Byoung-Moo ; Park, Yoon Jeong ; Hong, Seong-Doo ; Roh, Sangho ; Cho, Jae Jin ; Park, Won Ho ; Min, Byung-Moo</creatorcontrib><description>Electrospinning of type I collagen in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) to fabricate a biomimetic nanofibrous extracellular matrix for tissue engineering was investigated. The average diameter of collagen nanofibers electrospun from 8% collagen solution in HFIP was 460
nm (range of 100–1200
nm). The as-spun collagen nanofibrous matrix was chemically cross-linked by glutaraldehyde vapor with a saturated aqueous solution and then treated with aqueous 0.1
m glycine to block unreacted aldehyde groups. With vapor phase cross-linking for 12
h, porosity of the collagen matrix decreased from 89% to 71%. The collagen nanofibrous matrix showed good tensile strength, even in aqueous solution. Effects on cytocompatibility, cell behavior, cell and collagen nanofiber interactions, and open wound healing in rats were examined. Relatively low cell adhesion was observed on uncoated collagen nanofibers, whereas collagen nanofibrous matrices treated with type I collagen or laminin were functionally active in responses in normal human keratinocytes. Collagen nanofibrous matrices were very effective as wound-healing accelerators in early-stage wound healing. Our results indicate that cross-linked collagen nanofibers coated with ECM proteins, particularly type I collagen, may be a good candidate for biomedical applications, such as wound dressing and scaffolds for tissue engineering.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2005.08.004</identifier><identifier>PMID: 16143390</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Adult ; Animals ; Biocompatible Materials ; Cell Adhesion - physiology ; Cell behavior ; Cell Movement - physiology ; Cells, Cultured ; Collagen nanofibers ; Collagen Type I ; Electrospinning ; Extracellular Matrix ; Extracellular matrix protein ; Humans ; Keratinocytes - physiology ; Microscopy, Electron, Scanning ; Nanostructures ; Nanotechnology - methods ; Rats ; Rats, Sprague-Dawley ; Skin - injuries ; Skin - pathology ; Wound healing ; Wound Healing - physiology</subject><ispartof>Biomaterials, 2006-03, Vol.27 (8), p.1452-1461</ispartof><rights>2005 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c506t-79b7da1bce59d1997ba0d8d5f6e77a4d43a5a92f1fc79b716ca0d5bbd0bab6443</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142961205007921$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16143390$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rho, Kyong Su</creatorcontrib><creatorcontrib>Jeong, Lim</creatorcontrib><creatorcontrib>Lee, Gene</creatorcontrib><creatorcontrib>Seo, Byoung-Moo</creatorcontrib><creatorcontrib>Park, Yoon Jeong</creatorcontrib><creatorcontrib>Hong, Seong-Doo</creatorcontrib><creatorcontrib>Roh, Sangho</creatorcontrib><creatorcontrib>Cho, Jae Jin</creatorcontrib><creatorcontrib>Park, Won Ho</creatorcontrib><creatorcontrib>Min, Byung-Moo</creatorcontrib><title>Electrospinning of collagen nanofibers: Effects on the behavior of normal human keratinocytes and early-stage wound healing</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Electrospinning of type I collagen in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) to fabricate a biomimetic nanofibrous extracellular matrix for tissue engineering was investigated. The average diameter of collagen nanofibers electrospun from 8% collagen solution in HFIP was 460
nm (range of 100–1200
nm). The as-spun collagen nanofibrous matrix was chemically cross-linked by glutaraldehyde vapor with a saturated aqueous solution and then treated with aqueous 0.1
m glycine to block unreacted aldehyde groups. With vapor phase cross-linking for 12
h, porosity of the collagen matrix decreased from 89% to 71%. The collagen nanofibrous matrix showed good tensile strength, even in aqueous solution. Effects on cytocompatibility, cell behavior, cell and collagen nanofiber interactions, and open wound healing in rats were examined. Relatively low cell adhesion was observed on uncoated collagen nanofibers, whereas collagen nanofibrous matrices treated with type I collagen or laminin were functionally active in responses in normal human keratinocytes. Collagen nanofibrous matrices were very effective as wound-healing accelerators in early-stage wound healing. Our results indicate that cross-linked collagen nanofibers coated with ECM proteins, particularly type I collagen, may be a good candidate for biomedical applications, such as wound dressing and scaffolds for tissue engineering.</description><subject>Adult</subject><subject>Animals</subject><subject>Biocompatible Materials</subject><subject>Cell Adhesion - physiology</subject><subject>Cell behavior</subject><subject>Cell Movement - physiology</subject><subject>Cells, Cultured</subject><subject>Collagen nanofibers</subject><subject>Collagen Type I</subject><subject>Electrospinning</subject><subject>Extracellular Matrix</subject><subject>Extracellular matrix protein</subject><subject>Humans</subject><subject>Keratinocytes - physiology</subject><subject>Microscopy, Electron, Scanning</subject><subject>Nanostructures</subject><subject>Nanotechnology - methods</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Skin - injuries</subject><subject>Skin - pathology</subject><subject>Wound healing</subject><subject>Wound Healing - physiology</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU2PFCEQhonRuOPqXzDEg7duoRuaZm9mHT-STbzomfBR7DB2wwjdayb-eZnMJHpbTwR4qt5UPQi9oaSlhA7v9q0JadYL5KCn0naE8JaMLSHsCdrQUYwNl4Q_RRtCWdfIgXZX6EUpe1LvhHXP0RUdKOt7STbo93YCu-RUDiHGEO9x8timadL3EHHUMflgIJcbvPW-ggWniJcdYAM7_RBSPvEx5VlPeLfOOuIfkPUSYrLHBQrW0WHQeTo2Zakt8a-01pcd6KlmvUTPfB0AXl3Oa_T94_bb7efm7uunL7fv7xrLybA0QhrhNDUWuHRUSmE0caPjfgAhNHOs11zLzlNvTygdbP3nxjhitBkY66_R23PfQ04_VyiLmkOxUIeMkNaiBKGSi4E8CnaS9kJI_ihIJWNC9kMFb86grSsuGbw65DDrfFSUqJNMtVf_ylQnmYqMqsqsxa8vKauZwf0tvdirwIczAHV7DwGyKjZAtOBCrrKUS-F_cv4A8Ia6lg</recordid><startdate>20060301</startdate><enddate>20060301</enddate><creator>Rho, Kyong Su</creator><creator>Jeong, Lim</creator><creator>Lee, Gene</creator><creator>Seo, Byoung-Moo</creator><creator>Park, Yoon Jeong</creator><creator>Hong, Seong-Doo</creator><creator>Roh, Sangho</creator><creator>Cho, Jae Jin</creator><creator>Park, Won Ho</creator><creator>Min, Byung-Moo</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7TB</scope><scope>7U5</scope><scope>F28</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20060301</creationdate><title>Electrospinning of collagen nanofibers: Effects on the behavior of normal human keratinocytes and early-stage wound healing</title><author>Rho, Kyong Su ; Jeong, Lim ; Lee, Gene ; Seo, Byoung-Moo ; Park, Yoon Jeong ; Hong, Seong-Doo ; Roh, Sangho ; Cho, Jae Jin ; Park, Won Ho ; Min, Byung-Moo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c506t-79b7da1bce59d1997ba0d8d5f6e77a4d43a5a92f1fc79b716ca0d5bbd0bab6443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Adult</topic><topic>Animals</topic><topic>Biocompatible Materials</topic><topic>Cell Adhesion - physiology</topic><topic>Cell behavior</topic><topic>Cell Movement - physiology</topic><topic>Cells, Cultured</topic><topic>Collagen nanofibers</topic><topic>Collagen Type I</topic><topic>Electrospinning</topic><topic>Extracellular Matrix</topic><topic>Extracellular matrix protein</topic><topic>Humans</topic><topic>Keratinocytes - physiology</topic><topic>Microscopy, Electron, Scanning</topic><topic>Nanostructures</topic><topic>Nanotechnology - methods</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Skin - injuries</topic><topic>Skin - pathology</topic><topic>Wound healing</topic><topic>Wound Healing - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rho, Kyong Su</creatorcontrib><creatorcontrib>Jeong, Lim</creatorcontrib><creatorcontrib>Lee, Gene</creatorcontrib><creatorcontrib>Seo, Byoung-Moo</creatorcontrib><creatorcontrib>Park, Yoon Jeong</creatorcontrib><creatorcontrib>Hong, Seong-Doo</creatorcontrib><creatorcontrib>Roh, Sangho</creatorcontrib><creatorcontrib>Cho, Jae Jin</creatorcontrib><creatorcontrib>Park, Won Ho</creatorcontrib><creatorcontrib>Min, Byung-Moo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rho, Kyong Su</au><au>Jeong, Lim</au><au>Lee, Gene</au><au>Seo, Byoung-Moo</au><au>Park, Yoon Jeong</au><au>Hong, Seong-Doo</au><au>Roh, Sangho</au><au>Cho, Jae Jin</au><au>Park, Won Ho</au><au>Min, Byung-Moo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrospinning of collagen nanofibers: Effects on the behavior of normal human keratinocytes and early-stage wound healing</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2006-03-01</date><risdate>2006</risdate><volume>27</volume><issue>8</issue><spage>1452</spage><epage>1461</epage><pages>1452-1461</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Electrospinning of type I collagen in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) to fabricate a biomimetic nanofibrous extracellular matrix for tissue engineering was investigated. The average diameter of collagen nanofibers electrospun from 8% collagen solution in HFIP was 460
nm (range of 100–1200
nm). The as-spun collagen nanofibrous matrix was chemically cross-linked by glutaraldehyde vapor with a saturated aqueous solution and then treated with aqueous 0.1
m glycine to block unreacted aldehyde groups. With vapor phase cross-linking for 12
h, porosity of the collagen matrix decreased from 89% to 71%. The collagen nanofibrous matrix showed good tensile strength, even in aqueous solution. Effects on cytocompatibility, cell behavior, cell and collagen nanofiber interactions, and open wound healing in rats were examined. Relatively low cell adhesion was observed on uncoated collagen nanofibers, whereas collagen nanofibrous matrices treated with type I collagen or laminin were functionally active in responses in normal human keratinocytes. Collagen nanofibrous matrices were very effective as wound-healing accelerators in early-stage wound healing. Our results indicate that cross-linked collagen nanofibers coated with ECM proteins, particularly type I collagen, may be a good candidate for biomedical applications, such as wound dressing and scaffolds for tissue engineering.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>16143390</pmid><doi>10.1016/j.biomaterials.2005.08.004</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-9612 |
ispartof | Biomaterials, 2006-03, Vol.27 (8), p.1452-1461 |
issn | 0142-9612 1878-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_70195760 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Adult Animals Biocompatible Materials Cell Adhesion - physiology Cell behavior Cell Movement - physiology Cells, Cultured Collagen nanofibers Collagen Type I Electrospinning Extracellular Matrix Extracellular matrix protein Humans Keratinocytes - physiology Microscopy, Electron, Scanning Nanostructures Nanotechnology - methods Rats Rats, Sprague-Dawley Skin - injuries Skin - pathology Wound healing Wound Healing - physiology |
title | Electrospinning of collagen nanofibers: Effects on the behavior of normal human keratinocytes and early-stage wound healing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A22%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrospinning%20of%20collagen%20nanofibers:%20Effects%20on%20the%20behavior%20of%20normal%20human%20keratinocytes%20and%20early-stage%20wound%20healing&rft.jtitle=Biomaterials&rft.au=Rho,%20Kyong%20Su&rft.date=2006-03-01&rft.volume=27&rft.issue=8&rft.spage=1452&rft.epage=1461&rft.pages=1452-1461&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2005.08.004&rft_dat=%3Cproquest_cross%3E70195760%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19447936&rft_id=info:pmid/16143390&rft_els_id=S0142961205007921&rfr_iscdi=true |