Nanoparticle formulation may affect the stabilization of an antiischemic prodrug

The prodrug 5′-octanoyl-CPA (Oct-CPA) of the antiischemic N 6-cyclopentyladenosine (CPA) has been encapsulated by nanoprecipitation in poly(lactic acid) nanoparticles, which have been recovered by gel-filtration, ultra-centrifugation or dialysis. We have analysed how different surfactants and purifi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of pharmaceutics 2006-01, Vol.307 (1), p.103-113
Hauptverfasser: Leo, E., Contado, C., Bortolotti, F., Pavan, B., Scatturin, A., Tosi, G., Manfredini, S., Angusti, A., Dalpiaz, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 113
container_issue 1
container_start_page 103
container_title International journal of pharmaceutics
container_volume 307
creator Leo, E.
Contado, C.
Bortolotti, F.
Pavan, B.
Scatturin, A.
Tosi, G.
Manfredini, S.
Angusti, A.
Dalpiaz, A.
description The prodrug 5′-octanoyl-CPA (Oct-CPA) of the antiischemic N 6-cyclopentyladenosine (CPA) has been encapsulated by nanoprecipitation in poly(lactic acid) nanoparticles, which have been recovered by gel-filtration, ultra-centrifugation or dialysis. We have analysed how different surfactants and purification methods can influence the nanoparticle characteristics. The particle sizes have been obtained by scanning electron microscope, whereas a SdFFF system was employed to detect their distributions. The Oct-CPA release from nanoparticles and stabilities in human blood of free and encapsulated prodrug have been analysed by HPLC techniques. The effects of nanoparticles on CPA interaction toward adenosine A 1 receptor (its action site) have been analysed using radiolabelled drugs. The smallest nanoparticles and the best degree of homogeneity have been obtained using sodium cholate; the best recovery has been achieved by dialysis, whereas gel-filtration and ultra-centrifugation have induced the greatest removal of surfactants. The release of Oct-CPA was better controlled from the nanoparticles obtained using Pluronic F68 and purified by gel-filtration or ultra-centrifugation. Similarly, these nanoparticles better increased the stability of the prodrug in human blood. In particular, the nanoparticles purified by ultra-centrifugation induced a strong stability to a fraction of the encapsulated Oct-CPA. Any interference by unloaded nanoparticles has been registered for CPA-adenosine A 1 receptor interaction.
doi_str_mv 10.1016/j.ijpharm.2005.09.031
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70195157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378517305006551</els_id><sourcerecordid>70195157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-5ff7a3d952bcb095755c831e4c44432b6f08c570ae8fd07528bf029b1910fab83</originalsourceid><addsrcrecordid>eNqFkE1r3DAQhkVoSLZJfkKLL83NzsiyLOlUytI0haXJoTmLsSx1ZfyxlexC-uujZQ05BgbmMM_MvDyEfKJQUKD1XVf47rDHMBQlAC9AFcDoGdlQKVjOKlF_IBtgQuacCnZJPsbYAUBdUnZBLmldSiVluSFPv3CcDhhmb3qbuSkMS4-zn8ZswJcMnbNmzua9zeKMje_9_9NwchmOqWbvo9nbwZvsEKY2LH-uybnDPtqbtV-R5_vvv7cP-e7xx8_tt11umGJzzp0TyFrFy8Y0oLjg3EhGbWWqqmJlUzuQhgtAK10LgpeycVCqhioKDhvJrsjt6W76-3excdZDimL7Hkc7LVELoIpTLhLIT6AJU4zBOn0IfsDwoinoo0rd6VWlPqrUoHRSmfY-rw-WZrDt29bqLgFfVgCjwd4FHI2Pb5xgohb0eOjribNJxz9vg47G29HY1odkV7eTfyfKK2UHlXA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70195157</pqid></control><display><type>article</type><title>Nanoparticle formulation may affect the stabilization of an antiischemic prodrug</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Leo, E. ; Contado, C. ; Bortolotti, F. ; Pavan, B. ; Scatturin, A. ; Tosi, G. ; Manfredini, S. ; Angusti, A. ; Dalpiaz, A.</creator><creatorcontrib>Leo, E. ; Contado, C. ; Bortolotti, F. ; Pavan, B. ; Scatturin, A. ; Tosi, G. ; Manfredini, S. ; Angusti, A. ; Dalpiaz, A.</creatorcontrib><description>The prodrug 5′-octanoyl-CPA (Oct-CPA) of the antiischemic N 6-cyclopentyladenosine (CPA) has been encapsulated by nanoprecipitation in poly(lactic acid) nanoparticles, which have been recovered by gel-filtration, ultra-centrifugation or dialysis. We have analysed how different surfactants and purification methods can influence the nanoparticle characteristics. The particle sizes have been obtained by scanning electron microscope, whereas a SdFFF system was employed to detect their distributions. The Oct-CPA release from nanoparticles and stabilities in human blood of free and encapsulated prodrug have been analysed by HPLC techniques. The effects of nanoparticles on CPA interaction toward adenosine A 1 receptor (its action site) have been analysed using radiolabelled drugs. The smallest nanoparticles and the best degree of homogeneity have been obtained using sodium cholate; the best recovery has been achieved by dialysis, whereas gel-filtration and ultra-centrifugation have induced the greatest removal of surfactants. The release of Oct-CPA was better controlled from the nanoparticles obtained using Pluronic F68 and purified by gel-filtration or ultra-centrifugation. Similarly, these nanoparticles better increased the stability of the prodrug in human blood. In particular, the nanoparticles purified by ultra-centrifugation induced a strong stability to a fraction of the encapsulated Oct-CPA. Any interference by unloaded nanoparticles has been registered for CPA-adenosine A 1 receptor interaction.</description><identifier>ISSN: 0378-5173</identifier><identifier>EISSN: 1873-3476</identifier><identifier>DOI: 10.1016/j.ijpharm.2005.09.031</identifier><identifier>PMID: 16289882</identifier><identifier>CODEN: IJPHDE</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Adenosine - analogs &amp; derivatives ; Adenosine - blood ; Adenosine - chemistry ; Adenosine - pharmacokinetics ; Adenosine A1 Receptor Agonists ; Biological and medical sciences ; Cells, Cultured ; Chemistry, Pharmaceutical ; Controlled release ; Drug Carriers ; Drug Stability ; General pharmacology ; Humans ; Hydrolysis ; Ischemia - drug therapy ; Medical sciences ; N6-cyclopentyladenosine ; Nanoparticles ; Nanostructures ; Particle Size ; Pharmaceutical technology. Pharmaceutical industry ; Pharmacology. Drug treatments ; Poloxamer - chemistry ; Prodrug ; Prodrugs - chemistry ; Prodrugs - metabolism ; Prodrugs - pharmacokinetics ; Receptor, Adenosine A1 - metabolism ; SdFFF ; Sodium Cholate - chemistry ; Stability ; Surface-Active Agents - chemistry</subject><ispartof>International journal of pharmaceutics, 2006-01, Vol.307 (1), p.103-113</ispartof><rights>2005 Elsevier B.V.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-5ff7a3d952bcb095755c831e4c44432b6f08c570ae8fd07528bf029b1910fab83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378517305006551$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17376711$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16289882$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Leo, E.</creatorcontrib><creatorcontrib>Contado, C.</creatorcontrib><creatorcontrib>Bortolotti, F.</creatorcontrib><creatorcontrib>Pavan, B.</creatorcontrib><creatorcontrib>Scatturin, A.</creatorcontrib><creatorcontrib>Tosi, G.</creatorcontrib><creatorcontrib>Manfredini, S.</creatorcontrib><creatorcontrib>Angusti, A.</creatorcontrib><creatorcontrib>Dalpiaz, A.</creatorcontrib><title>Nanoparticle formulation may affect the stabilization of an antiischemic prodrug</title><title>International journal of pharmaceutics</title><addtitle>Int J Pharm</addtitle><description>The prodrug 5′-octanoyl-CPA (Oct-CPA) of the antiischemic N 6-cyclopentyladenosine (CPA) has been encapsulated by nanoprecipitation in poly(lactic acid) nanoparticles, which have been recovered by gel-filtration, ultra-centrifugation or dialysis. We have analysed how different surfactants and purification methods can influence the nanoparticle characteristics. The particle sizes have been obtained by scanning electron microscope, whereas a SdFFF system was employed to detect their distributions. The Oct-CPA release from nanoparticles and stabilities in human blood of free and encapsulated prodrug have been analysed by HPLC techniques. The effects of nanoparticles on CPA interaction toward adenosine A 1 receptor (its action site) have been analysed using radiolabelled drugs. The smallest nanoparticles and the best degree of homogeneity have been obtained using sodium cholate; the best recovery has been achieved by dialysis, whereas gel-filtration and ultra-centrifugation have induced the greatest removal of surfactants. The release of Oct-CPA was better controlled from the nanoparticles obtained using Pluronic F68 and purified by gel-filtration or ultra-centrifugation. Similarly, these nanoparticles better increased the stability of the prodrug in human blood. In particular, the nanoparticles purified by ultra-centrifugation induced a strong stability to a fraction of the encapsulated Oct-CPA. Any interference by unloaded nanoparticles has been registered for CPA-adenosine A 1 receptor interaction.</description><subject>Adenosine - analogs &amp; derivatives</subject><subject>Adenosine - blood</subject><subject>Adenosine - chemistry</subject><subject>Adenosine - pharmacokinetics</subject><subject>Adenosine A1 Receptor Agonists</subject><subject>Biological and medical sciences</subject><subject>Cells, Cultured</subject><subject>Chemistry, Pharmaceutical</subject><subject>Controlled release</subject><subject>Drug Carriers</subject><subject>Drug Stability</subject><subject>General pharmacology</subject><subject>Humans</subject><subject>Hydrolysis</subject><subject>Ischemia - drug therapy</subject><subject>Medical sciences</subject><subject>N6-cyclopentyladenosine</subject><subject>Nanoparticles</subject><subject>Nanostructures</subject><subject>Particle Size</subject><subject>Pharmaceutical technology. Pharmaceutical industry</subject><subject>Pharmacology. Drug treatments</subject><subject>Poloxamer - chemistry</subject><subject>Prodrug</subject><subject>Prodrugs - chemistry</subject><subject>Prodrugs - metabolism</subject><subject>Prodrugs - pharmacokinetics</subject><subject>Receptor, Adenosine A1 - metabolism</subject><subject>SdFFF</subject><subject>Sodium Cholate - chemistry</subject><subject>Stability</subject><subject>Surface-Active Agents - chemistry</subject><issn>0378-5173</issn><issn>1873-3476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkE1r3DAQhkVoSLZJfkKLL83NzsiyLOlUytI0haXJoTmLsSx1ZfyxlexC-uujZQ05BgbmMM_MvDyEfKJQUKD1XVf47rDHMBQlAC9AFcDoGdlQKVjOKlF_IBtgQuacCnZJPsbYAUBdUnZBLmldSiVluSFPv3CcDhhmb3qbuSkMS4-zn8ZswJcMnbNmzua9zeKMje_9_9NwchmOqWbvo9nbwZvsEKY2LH-uybnDPtqbtV-R5_vvv7cP-e7xx8_tt11umGJzzp0TyFrFy8Y0oLjg3EhGbWWqqmJlUzuQhgtAK10LgpeycVCqhioKDhvJrsjt6W76-3excdZDimL7Hkc7LVELoIpTLhLIT6AJU4zBOn0IfsDwoinoo0rd6VWlPqrUoHRSmfY-rw-WZrDt29bqLgFfVgCjwd4FHI2Pb5xgohb0eOjribNJxz9vg47G29HY1odkV7eTfyfKK2UHlXA</recordid><startdate>20060103</startdate><enddate>20060103</enddate><creator>Leo, E.</creator><creator>Contado, C.</creator><creator>Bortolotti, F.</creator><creator>Pavan, B.</creator><creator>Scatturin, A.</creator><creator>Tosi, G.</creator><creator>Manfredini, S.</creator><creator>Angusti, A.</creator><creator>Dalpiaz, A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20060103</creationdate><title>Nanoparticle formulation may affect the stabilization of an antiischemic prodrug</title><author>Leo, E. ; Contado, C. ; Bortolotti, F. ; Pavan, B. ; Scatturin, A. ; Tosi, G. ; Manfredini, S. ; Angusti, A. ; Dalpiaz, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-5ff7a3d952bcb095755c831e4c44432b6f08c570ae8fd07528bf029b1910fab83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Adenosine - analogs &amp; derivatives</topic><topic>Adenosine - blood</topic><topic>Adenosine - chemistry</topic><topic>Adenosine - pharmacokinetics</topic><topic>Adenosine A1 Receptor Agonists</topic><topic>Biological and medical sciences</topic><topic>Cells, Cultured</topic><topic>Chemistry, Pharmaceutical</topic><topic>Controlled release</topic><topic>Drug Carriers</topic><topic>Drug Stability</topic><topic>General pharmacology</topic><topic>Humans</topic><topic>Hydrolysis</topic><topic>Ischemia - drug therapy</topic><topic>Medical sciences</topic><topic>N6-cyclopentyladenosine</topic><topic>Nanoparticles</topic><topic>Nanostructures</topic><topic>Particle Size</topic><topic>Pharmaceutical technology. Pharmaceutical industry</topic><topic>Pharmacology. Drug treatments</topic><topic>Poloxamer - chemistry</topic><topic>Prodrug</topic><topic>Prodrugs - chemistry</topic><topic>Prodrugs - metabolism</topic><topic>Prodrugs - pharmacokinetics</topic><topic>Receptor, Adenosine A1 - metabolism</topic><topic>SdFFF</topic><topic>Sodium Cholate - chemistry</topic><topic>Stability</topic><topic>Surface-Active Agents - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leo, E.</creatorcontrib><creatorcontrib>Contado, C.</creatorcontrib><creatorcontrib>Bortolotti, F.</creatorcontrib><creatorcontrib>Pavan, B.</creatorcontrib><creatorcontrib>Scatturin, A.</creatorcontrib><creatorcontrib>Tosi, G.</creatorcontrib><creatorcontrib>Manfredini, S.</creatorcontrib><creatorcontrib>Angusti, A.</creatorcontrib><creatorcontrib>Dalpiaz, A.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>International journal of pharmaceutics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leo, E.</au><au>Contado, C.</au><au>Bortolotti, F.</au><au>Pavan, B.</au><au>Scatturin, A.</au><au>Tosi, G.</au><au>Manfredini, S.</au><au>Angusti, A.</au><au>Dalpiaz, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanoparticle formulation may affect the stabilization of an antiischemic prodrug</atitle><jtitle>International journal of pharmaceutics</jtitle><addtitle>Int J Pharm</addtitle><date>2006-01-03</date><risdate>2006</risdate><volume>307</volume><issue>1</issue><spage>103</spage><epage>113</epage><pages>103-113</pages><issn>0378-5173</issn><eissn>1873-3476</eissn><coden>IJPHDE</coden><abstract>The prodrug 5′-octanoyl-CPA (Oct-CPA) of the antiischemic N 6-cyclopentyladenosine (CPA) has been encapsulated by nanoprecipitation in poly(lactic acid) nanoparticles, which have been recovered by gel-filtration, ultra-centrifugation or dialysis. We have analysed how different surfactants and purification methods can influence the nanoparticle characteristics. The particle sizes have been obtained by scanning electron microscope, whereas a SdFFF system was employed to detect their distributions. The Oct-CPA release from nanoparticles and stabilities in human blood of free and encapsulated prodrug have been analysed by HPLC techniques. The effects of nanoparticles on CPA interaction toward adenosine A 1 receptor (its action site) have been analysed using radiolabelled drugs. The smallest nanoparticles and the best degree of homogeneity have been obtained using sodium cholate; the best recovery has been achieved by dialysis, whereas gel-filtration and ultra-centrifugation have induced the greatest removal of surfactants. The release of Oct-CPA was better controlled from the nanoparticles obtained using Pluronic F68 and purified by gel-filtration or ultra-centrifugation. Similarly, these nanoparticles better increased the stability of the prodrug in human blood. In particular, the nanoparticles purified by ultra-centrifugation induced a strong stability to a fraction of the encapsulated Oct-CPA. Any interference by unloaded nanoparticles has been registered for CPA-adenosine A 1 receptor interaction.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><pmid>16289882</pmid><doi>10.1016/j.ijpharm.2005.09.031</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-5173
ispartof International journal of pharmaceutics, 2006-01, Vol.307 (1), p.103-113
issn 0378-5173
1873-3476
language eng
recordid cdi_proquest_miscellaneous_70195157
source MEDLINE; Elsevier ScienceDirect Journals
subjects Adenosine - analogs & derivatives
Adenosine - blood
Adenosine - chemistry
Adenosine - pharmacokinetics
Adenosine A1 Receptor Agonists
Biological and medical sciences
Cells, Cultured
Chemistry, Pharmaceutical
Controlled release
Drug Carriers
Drug Stability
General pharmacology
Humans
Hydrolysis
Ischemia - drug therapy
Medical sciences
N6-cyclopentyladenosine
Nanoparticles
Nanostructures
Particle Size
Pharmaceutical technology. Pharmaceutical industry
Pharmacology. Drug treatments
Poloxamer - chemistry
Prodrug
Prodrugs - chemistry
Prodrugs - metabolism
Prodrugs - pharmacokinetics
Receptor, Adenosine A1 - metabolism
SdFFF
Sodium Cholate - chemistry
Stability
Surface-Active Agents - chemistry
title Nanoparticle formulation may affect the stabilization of an antiischemic prodrug
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T05%3A50%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanoparticle%20formulation%20may%20affect%20the%20stabilization%20of%20an%20antiischemic%20prodrug&rft.jtitle=International%20journal%20of%20pharmaceutics&rft.au=Leo,%20E.&rft.date=2006-01-03&rft.volume=307&rft.issue=1&rft.spage=103&rft.epage=113&rft.pages=103-113&rft.issn=0378-5173&rft.eissn=1873-3476&rft.coden=IJPHDE&rft_id=info:doi/10.1016/j.ijpharm.2005.09.031&rft_dat=%3Cproquest_cross%3E70195157%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70195157&rft_id=info:pmid/16289882&rft_els_id=S0378517305006551&rfr_iscdi=true