Automatic discrimination of fine roots in minirhizotron images

Minirhizotrons provide detailed information on the production, life history and mortality of fine roots. However, manual processing of minirhizotron images is time-consuming, limiting the number and size of experiments that can reasonably be analysed. Previously, an algorithm was developed to automa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The New phytologist 2008-01, Vol.177 (2), p.549-557
Hauptverfasser: Zeng, Guang, Birchfield, Stanley T, Wells, Christina E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 557
container_issue 2
container_start_page 549
container_title The New phytologist
container_volume 177
creator Zeng, Guang
Birchfield, Stanley T
Wells, Christina E
description Minirhizotrons provide detailed information on the production, life history and mortality of fine roots. However, manual processing of minirhizotron images is time-consuming, limiting the number and size of experiments that can reasonably be analysed. Previously, an algorithm was developed to automatically detect and measure individual roots in minirhizotron images. Here, species-specific root classifiers were developed to discriminate detected roots from bright background artifacts. Classifiers were developed from training images of peach (Prunus persica), freeman maple (Acer x freemanii) and sweetbay magnolia (Magnolia virginiana) using the Adaboost algorithm. True- and false-positive rates for classifiers were estimated using receiver operating characteristic curves. Classifiers gave true positive rates of 89-94% and false positive rates of 3-7% when applied to nontraining images of the species for which they were developed. The application of a classifier trained on one species to images from another species resulted in little or no reduction in accuracy. These results suggest that a single root classifier can be used to distinguish roots from background objects across multiple minirhizotron experiments. By incorporating root detection and discrimination algorithms into an open-source minirhizotron image analysis application, many analysis tasks that are currently performed by hand can be automated.
doi_str_mv 10.1111/j.1469-8137.2007.02271.x
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_70193454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4627287</jstor_id><sourcerecordid>4627287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5281-d44b06626d8c4010348ec2dc63425a614b61739ccc0c47d2146596cae49f0b253</originalsourceid><addsrcrecordid>eNqNkEFP3DAQha0KVLa0_6CiOXFLGI8d2zkUCSEoSAgqtUi9WV7HAa82MdhZFfj1dZoVXPFlbL33xjMfIQWFiuZztKooF02pKJMVAsgKECWtnj6QxauwQxYAqErBxZ898imlFQA0tcCPZI8q4IiAC3J8shlDb0Zvi9YnG33vh_wKQxG6ovODK2IIYyr8UGTFx3v_EsaYZd-bO5c-k93OrJP7sq375Pb87PfpRXl18-Py9OSqtDUqWracL0EIFK2yHCgwrpzF1grGsTaC8qWgkjXWWrBctpiXqBthjeNNB0us2T45nPs-xPC4cWnUfZ7WrddmcGGTtATaMF7zbFSz0caQUnSdfsg7mfisKeiJnV7pCZGeEOmJnf7PTj_l6MH2j82yd-1bcAsrG77Phr9-7Z7f3Vhf_7yYbjn_dc6v0hjia54LlKhklr_NcmeCNnfRJ337C4EyAMVUI2v2D9fIjts</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70193454</pqid></control><display><type>article</type><title>Automatic discrimination of fine roots in minirhizotron images</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>Jstor Complete Legacy</source><source>IngentaConnect Free/Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Zeng, Guang ; Birchfield, Stanley T ; Wells, Christina E</creator><creatorcontrib>Zeng, Guang ; Birchfield, Stanley T ; Wells, Christina E</creatorcontrib><description>Minirhizotrons provide detailed information on the production, life history and mortality of fine roots. However, manual processing of minirhizotron images is time-consuming, limiting the number and size of experiments that can reasonably be analysed. Previously, an algorithm was developed to automatically detect and measure individual roots in minirhizotron images. Here, species-specific root classifiers were developed to discriminate detected roots from bright background artifacts. Classifiers were developed from training images of peach (Prunus persica), freeman maple (Acer x freemanii) and sweetbay magnolia (Magnolia virginiana) using the Adaboost algorithm. True- and false-positive rates for classifiers were estimated using receiver operating characteristic curves. Classifiers gave true positive rates of 89-94% and false positive rates of 3-7% when applied to nontraining images of the species for which they were developed. The application of a classifier trained on one species to images from another species resulted in little or no reduction in accuracy. These results suggest that a single root classifier can be used to distinguish roots from background objects across multiple minirhizotron experiments. By incorporating root detection and discrimination algorithms into an open-source minirhizotron image analysis application, many analysis tasks that are currently performed by hand can be automated.</description><identifier>ISSN: 0028-646X</identifier><identifier>EISSN: 1469-8137</identifier><identifier>DOI: 10.1111/j.1469-8137.2007.02271.x</identifier><identifier>PMID: 18042202</identifier><language>eng</language><publisher>Oxford, UK: Oxford, UK : Blackwell Publishing Ltd</publisher><subject>Acer - anatomy &amp; histology ; Algorithms ; fine roots ; Forest soils ; Geometric shapes ; Image analysis ; Image classification ; Magnolia ; Magnolia - anatomy &amp; histology ; maple ; Methods ; minirhizotron ; Parallel lines ; peach ; peaches ; Pixels ; Plant roots ; Plant Roots - anatomy &amp; histology ; Plant Roots - growth &amp; development ; Prunus - anatomy &amp; histology ; root demography ; Software ; Symmetry ; Threshing</subject><ispartof>The New phytologist, 2008-01, Vol.177 (2), p.549-557</ispartof><rights>Copyright 2007 New Phytologist</rights><rights>The Authors (2007).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5281-d44b06626d8c4010348ec2dc63425a614b61739ccc0c47d2146596cae49f0b253</citedby><cites>FETCH-LOGICAL-c5281-d44b06626d8c4010348ec2dc63425a614b61739ccc0c47d2146596cae49f0b253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4627287$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4627287$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,781,785,804,1418,1434,27928,27929,45578,45579,46413,46837,58021,58254</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18042202$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zeng, Guang</creatorcontrib><creatorcontrib>Birchfield, Stanley T</creatorcontrib><creatorcontrib>Wells, Christina E</creatorcontrib><title>Automatic discrimination of fine roots in minirhizotron images</title><title>The New phytologist</title><addtitle>New Phytol</addtitle><description>Minirhizotrons provide detailed information on the production, life history and mortality of fine roots. However, manual processing of minirhizotron images is time-consuming, limiting the number and size of experiments that can reasonably be analysed. Previously, an algorithm was developed to automatically detect and measure individual roots in minirhizotron images. Here, species-specific root classifiers were developed to discriminate detected roots from bright background artifacts. Classifiers were developed from training images of peach (Prunus persica), freeman maple (Acer x freemanii) and sweetbay magnolia (Magnolia virginiana) using the Adaboost algorithm. True- and false-positive rates for classifiers were estimated using receiver operating characteristic curves. Classifiers gave true positive rates of 89-94% and false positive rates of 3-7% when applied to nontraining images of the species for which they were developed. The application of a classifier trained on one species to images from another species resulted in little or no reduction in accuracy. These results suggest that a single root classifier can be used to distinguish roots from background objects across multiple minirhizotron experiments. By incorporating root detection and discrimination algorithms into an open-source minirhizotron image analysis application, many analysis tasks that are currently performed by hand can be automated.</description><subject>Acer - anatomy &amp; histology</subject><subject>Algorithms</subject><subject>fine roots</subject><subject>Forest soils</subject><subject>Geometric shapes</subject><subject>Image analysis</subject><subject>Image classification</subject><subject>Magnolia</subject><subject>Magnolia - anatomy &amp; histology</subject><subject>maple</subject><subject>Methods</subject><subject>minirhizotron</subject><subject>Parallel lines</subject><subject>peach</subject><subject>peaches</subject><subject>Pixels</subject><subject>Plant roots</subject><subject>Plant Roots - anatomy &amp; histology</subject><subject>Plant Roots - growth &amp; development</subject><subject>Prunus - anatomy &amp; histology</subject><subject>root demography</subject><subject>Software</subject><subject>Symmetry</subject><subject>Threshing</subject><issn>0028-646X</issn><issn>1469-8137</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkEFP3DAQha0KVLa0_6CiOXFLGI8d2zkUCSEoSAgqtUi9WV7HAa82MdhZFfj1dZoVXPFlbL33xjMfIQWFiuZztKooF02pKJMVAsgKECWtnj6QxauwQxYAqErBxZ898imlFQA0tcCPZI8q4IiAC3J8shlDb0Zvi9YnG33vh_wKQxG6ovODK2IIYyr8UGTFx3v_EsaYZd-bO5c-k93OrJP7sq375Pb87PfpRXl18-Py9OSqtDUqWracL0EIFK2yHCgwrpzF1grGsTaC8qWgkjXWWrBctpiXqBthjeNNB0us2T45nPs-xPC4cWnUfZ7WrddmcGGTtATaMF7zbFSz0caQUnSdfsg7mfisKeiJnV7pCZGeEOmJnf7PTj_l6MH2j82yd-1bcAsrG77Phr9-7Z7f3Vhf_7yYbjn_dc6v0hjia54LlKhklr_NcmeCNnfRJ337C4EyAMVUI2v2D9fIjts</recordid><startdate>200801</startdate><enddate>200801</enddate><creator>Zeng, Guang</creator><creator>Birchfield, Stanley T</creator><creator>Wells, Christina E</creator><general>Oxford, UK : Blackwell Publishing Ltd</general><general>Blackwell Science</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200801</creationdate><title>Automatic discrimination of fine roots in minirhizotron images</title><author>Zeng, Guang ; Birchfield, Stanley T ; Wells, Christina E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5281-d44b06626d8c4010348ec2dc63425a614b61739ccc0c47d2146596cae49f0b253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Acer - anatomy &amp; histology</topic><topic>Algorithms</topic><topic>fine roots</topic><topic>Forest soils</topic><topic>Geometric shapes</topic><topic>Image analysis</topic><topic>Image classification</topic><topic>Magnolia</topic><topic>Magnolia - anatomy &amp; histology</topic><topic>maple</topic><topic>Methods</topic><topic>minirhizotron</topic><topic>Parallel lines</topic><topic>peach</topic><topic>peaches</topic><topic>Pixels</topic><topic>Plant roots</topic><topic>Plant Roots - anatomy &amp; histology</topic><topic>Plant Roots - growth &amp; development</topic><topic>Prunus - anatomy &amp; histology</topic><topic>root demography</topic><topic>Software</topic><topic>Symmetry</topic><topic>Threshing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeng, Guang</creatorcontrib><creatorcontrib>Birchfield, Stanley T</creatorcontrib><creatorcontrib>Wells, Christina E</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The New phytologist</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeng, Guang</au><au>Birchfield, Stanley T</au><au>Wells, Christina E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic discrimination of fine roots in minirhizotron images</atitle><jtitle>The New phytologist</jtitle><addtitle>New Phytol</addtitle><date>2008-01</date><risdate>2008</risdate><volume>177</volume><issue>2</issue><spage>549</spage><epage>557</epage><pages>549-557</pages><issn>0028-646X</issn><eissn>1469-8137</eissn><abstract>Minirhizotrons provide detailed information on the production, life history and mortality of fine roots. However, manual processing of minirhizotron images is time-consuming, limiting the number and size of experiments that can reasonably be analysed. Previously, an algorithm was developed to automatically detect and measure individual roots in minirhizotron images. Here, species-specific root classifiers were developed to discriminate detected roots from bright background artifacts. Classifiers were developed from training images of peach (Prunus persica), freeman maple (Acer x freemanii) and sweetbay magnolia (Magnolia virginiana) using the Adaboost algorithm. True- and false-positive rates for classifiers were estimated using receiver operating characteristic curves. Classifiers gave true positive rates of 89-94% and false positive rates of 3-7% when applied to nontraining images of the species for which they were developed. The application of a classifier trained on one species to images from another species resulted in little or no reduction in accuracy. These results suggest that a single root classifier can be used to distinguish roots from background objects across multiple minirhizotron experiments. By incorporating root detection and discrimination algorithms into an open-source minirhizotron image analysis application, many analysis tasks that are currently performed by hand can be automated.</abstract><cop>Oxford, UK</cop><pub>Oxford, UK : Blackwell Publishing Ltd</pub><pmid>18042202</pmid><doi>10.1111/j.1469-8137.2007.02271.x</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-646X
ispartof The New phytologist, 2008-01, Vol.177 (2), p.549-557
issn 0028-646X
1469-8137
language eng
recordid cdi_proquest_miscellaneous_70193454
source MEDLINE; Access via Wiley Online Library; Jstor Complete Legacy; IngentaConnect Free/Open Access Journals; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection)
subjects Acer - anatomy & histology
Algorithms
fine roots
Forest soils
Geometric shapes
Image analysis
Image classification
Magnolia
Magnolia - anatomy & histology
maple
Methods
minirhizotron
Parallel lines
peach
peaches
Pixels
Plant roots
Plant Roots - anatomy & histology
Plant Roots - growth & development
Prunus - anatomy & histology
root demography
Software
Symmetry
Threshing
title Automatic discrimination of fine roots in minirhizotron images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T11%3A35%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20discrimination%20of%20fine%20roots%20in%20minirhizotron%20images&rft.jtitle=The%20New%20phytologist&rft.au=Zeng,%20Guang&rft.date=2008-01&rft.volume=177&rft.issue=2&rft.spage=549&rft.epage=557&rft.pages=549-557&rft.issn=0028-646X&rft.eissn=1469-8137&rft_id=info:doi/10.1111/j.1469-8137.2007.02271.x&rft_dat=%3Cjstor_proqu%3E4627287%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70193454&rft_id=info:pmid/18042202&rft_jstor_id=4627287&rfr_iscdi=true