Statistical optimization of process variables for the large-scale production of Metarhizium anisopliae conidiospores in solid-state fermentation

Optimization of conidial production was achieved by response surface methodology (RSM), a powerful mathematical approach widely applied in the optimization of fermentation process, using the three substrates; rice, barley and sorghum at variable pH, moisture content and yeast extract concentrations....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioresource technology 2008-04, Vol.99 (6), p.1530-1537
Hauptverfasser: Bhanu Prakash, G.V.S., Padmaja, V., Siva Kiran, R.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1537
container_issue 6
container_start_page 1530
container_title Bioresource technology
container_volume 99
creator Bhanu Prakash, G.V.S.
Padmaja, V.
Siva Kiran, R.R.
description Optimization of conidial production was achieved by response surface methodology (RSM), a powerful mathematical approach widely applied in the optimization of fermentation process, using the three substrates; rice, barley and sorghum at variable pH, moisture content and yeast extract concentrations. These three factors were found to be important, affecting Metarhizium anisopliae spore production. A 2 3 full factorial central composite design and RSM were applied to determine the optimal concentration of each variable. A second-order polynomial was determined by the multiple regression analysis of the experimental data. Moisture content of 75.68% for sorghum, 73.21% for barley and 22.34% for rice produced optimal results. Maximal conidial yield was recorded for rice at a pH of 7.01; at 7.06 for sorghum and at 6.76 for barley.
doi_str_mv 10.1016/j.biortech.2007.04.031
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70191635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960852407003689</els_id><sourcerecordid>70191635</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-a1111ce62a50116182b626711ed1ecb240a80d664c45fa75663e8117f9303a6a3</originalsourceid><addsrcrecordid>eNqFkU9v1DAQxSMEokvhKxRf4JZlxk7s5Aaq-CcVcSg9W15n0vUqiYPtVKKfgo-Mw27hWF9Gsn5v3tO8orhA2CKgfHfY7pwPiex-ywHUFqotCHxSbLBRouStkk-LDbQSyqbm1VnxIsYDQEYUf16coapbEAI3xe_rZJKLyVkzMD8nN7r7_OEn5ns2B28pRnZngjO7gSLrfWBpT2ww4ZbKmEW0Ut1iHzTfKJmwd_duGZmZXPTz4Awx6yfXOR9nH_IaN7HoB9eVMbsT6ymMNKW_vi-LZ70ZIr06zfPi5tPHH5dfyqvvn79efrgqbY0qlQbzsyS5qQFRYsN3kkuFSB2S3fEKTAOdlJWt6t6oWkpBDaLqWwHCSCPOi7fHvTn-z4Vi0qOLlobBTOSXqBVgi1LUj4LYylo2qDIoj6ANPsZAvZ6DG034pRH0Wpo-6IfS9FqahkrnRrLw4uSw7Ebq_stOLWXgzQkw68n7YCbr4j-Oc8Qa6zXB6yPXG6_NbcjMzTUHFACNFEpBJt4fCcqnvXMUdLSOJkudC2ST7rx7LO0fIBDE-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19656817</pqid></control><display><type>article</type><title>Statistical optimization of process variables for the large-scale production of Metarhizium anisopliae conidiospores in solid-state fermentation</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Bhanu Prakash, G.V.S. ; Padmaja, V. ; Siva Kiran, R.R.</creator><creatorcontrib>Bhanu Prakash, G.V.S. ; Padmaja, V. ; Siva Kiran, R.R.</creatorcontrib><description>Optimization of conidial production was achieved by response surface methodology (RSM), a powerful mathematical approach widely applied in the optimization of fermentation process, using the three substrates; rice, barley and sorghum at variable pH, moisture content and yeast extract concentrations. These three factors were found to be important, affecting Metarhizium anisopliae spore production. A 2 3 full factorial central composite design and RSM were applied to determine the optimal concentration of each variable. A second-order polynomial was determined by the multiple regression analysis of the experimental data. Moisture content of 75.68% for sorghum, 73.21% for barley and 22.34% for rice produced optimal results. Maximal conidial yield was recorded for rice at a pH of 7.01; at 7.06 for sorghum and at 6.76 for barley.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2007.04.031</identifier><identifier>PMID: 17590331</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Aspergillus - metabolism ; Biological and medical sciences ; Bioreactors ; Biotechnology ; Biotechnology - instrumentation ; Biotechnology - methods ; Conidiospores ; Fermentation ; Fundamental and applied biological sciences. Psychology ; Hordeum ; Hordeum vulgare ; Hydrogen-Ion Concentration ; Industrial Microbiology ; Metarhizium - metabolism ; Metarhizium anisopliae ; Methods. Procedures. Technologies ; Microbial engineering. Fermentation and microbial culture technology ; Models, Theoretical ; Oryza ; Oryza sativa ; Regression Analysis ; Reproducibility of Results ; Response surface methodology ; Solid-state fermentation ; Sorghum</subject><ispartof>Bioresource technology, 2008-04, Vol.99 (6), p.1530-1537</ispartof><rights>2007</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-a1111ce62a50116182b626711ed1ecb240a80d664c45fa75663e8117f9303a6a3</citedby><cites>FETCH-LOGICAL-c517t-a1111ce62a50116182b626711ed1ecb240a80d664c45fa75663e8117f9303a6a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biortech.2007.04.031$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22115157$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17590331$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bhanu Prakash, G.V.S.</creatorcontrib><creatorcontrib>Padmaja, V.</creatorcontrib><creatorcontrib>Siva Kiran, R.R.</creatorcontrib><title>Statistical optimization of process variables for the large-scale production of Metarhizium anisopliae conidiospores in solid-state fermentation</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>Optimization of conidial production was achieved by response surface methodology (RSM), a powerful mathematical approach widely applied in the optimization of fermentation process, using the three substrates; rice, barley and sorghum at variable pH, moisture content and yeast extract concentrations. These three factors were found to be important, affecting Metarhizium anisopliae spore production. A 2 3 full factorial central composite design and RSM were applied to determine the optimal concentration of each variable. A second-order polynomial was determined by the multiple regression analysis of the experimental data. Moisture content of 75.68% for sorghum, 73.21% for barley and 22.34% for rice produced optimal results. Maximal conidial yield was recorded for rice at a pH of 7.01; at 7.06 for sorghum and at 6.76 for barley.</description><subject>Aspergillus - metabolism</subject><subject>Biological and medical sciences</subject><subject>Bioreactors</subject><subject>Biotechnology</subject><subject>Biotechnology - instrumentation</subject><subject>Biotechnology - methods</subject><subject>Conidiospores</subject><subject>Fermentation</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hordeum</subject><subject>Hordeum vulgare</subject><subject>Hydrogen-Ion Concentration</subject><subject>Industrial Microbiology</subject><subject>Metarhizium - metabolism</subject><subject>Metarhizium anisopliae</subject><subject>Methods. Procedures. Technologies</subject><subject>Microbial engineering. Fermentation and microbial culture technology</subject><subject>Models, Theoretical</subject><subject>Oryza</subject><subject>Oryza sativa</subject><subject>Regression Analysis</subject><subject>Reproducibility of Results</subject><subject>Response surface methodology</subject><subject>Solid-state fermentation</subject><subject>Sorghum</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU9v1DAQxSMEokvhKxRf4JZlxk7s5Aaq-CcVcSg9W15n0vUqiYPtVKKfgo-Mw27hWF9Gsn5v3tO8orhA2CKgfHfY7pwPiex-ywHUFqotCHxSbLBRouStkk-LDbQSyqbm1VnxIsYDQEYUf16coapbEAI3xe_rZJKLyVkzMD8nN7r7_OEn5ns2B28pRnZngjO7gSLrfWBpT2ww4ZbKmEW0Ut1iHzTfKJmwd_duGZmZXPTz4Awx6yfXOR9nH_IaN7HoB9eVMbsT6ymMNKW_vi-LZ70ZIr06zfPi5tPHH5dfyqvvn79efrgqbY0qlQbzsyS5qQFRYsN3kkuFSB2S3fEKTAOdlJWt6t6oWkpBDaLqWwHCSCPOi7fHvTn-z4Vi0qOLlobBTOSXqBVgi1LUj4LYylo2qDIoj6ANPsZAvZ6DG034pRH0Wpo-6IfS9FqahkrnRrLw4uSw7Ebq_stOLWXgzQkw68n7YCbr4j-Oc8Qa6zXB6yPXG6_NbcjMzTUHFACNFEpBJt4fCcqnvXMUdLSOJkudC2ST7rx7LO0fIBDE-Q</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Bhanu Prakash, G.V.S.</creator><creator>Padmaja, V.</creator><creator>Siva Kiran, R.R.</creator><general>Elsevier Ltd</general><general>[New York, NY]: Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20080401</creationdate><title>Statistical optimization of process variables for the large-scale production of Metarhizium anisopliae conidiospores in solid-state fermentation</title><author>Bhanu Prakash, G.V.S. ; Padmaja, V. ; Siva Kiran, R.R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-a1111ce62a50116182b626711ed1ecb240a80d664c45fa75663e8117f9303a6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Aspergillus - metabolism</topic><topic>Biological and medical sciences</topic><topic>Bioreactors</topic><topic>Biotechnology</topic><topic>Biotechnology - instrumentation</topic><topic>Biotechnology - methods</topic><topic>Conidiospores</topic><topic>Fermentation</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hordeum</topic><topic>Hordeum vulgare</topic><topic>Hydrogen-Ion Concentration</topic><topic>Industrial Microbiology</topic><topic>Metarhizium - metabolism</topic><topic>Metarhizium anisopliae</topic><topic>Methods. Procedures. Technologies</topic><topic>Microbial engineering. Fermentation and microbial culture technology</topic><topic>Models, Theoretical</topic><topic>Oryza</topic><topic>Oryza sativa</topic><topic>Regression Analysis</topic><topic>Reproducibility of Results</topic><topic>Response surface methodology</topic><topic>Solid-state fermentation</topic><topic>Sorghum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhanu Prakash, G.V.S.</creatorcontrib><creatorcontrib>Padmaja, V.</creatorcontrib><creatorcontrib>Siva Kiran, R.R.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhanu Prakash, G.V.S.</au><au>Padmaja, V.</au><au>Siva Kiran, R.R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Statistical optimization of process variables for the large-scale production of Metarhizium anisopliae conidiospores in solid-state fermentation</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2008-04-01</date><risdate>2008</risdate><volume>99</volume><issue>6</issue><spage>1530</spage><epage>1537</epage><pages>1530-1537</pages><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>Optimization of conidial production was achieved by response surface methodology (RSM), a powerful mathematical approach widely applied in the optimization of fermentation process, using the three substrates; rice, barley and sorghum at variable pH, moisture content and yeast extract concentrations. These three factors were found to be important, affecting Metarhizium anisopliae spore production. A 2 3 full factorial central composite design and RSM were applied to determine the optimal concentration of each variable. A second-order polynomial was determined by the multiple regression analysis of the experimental data. Moisture content of 75.68% for sorghum, 73.21% for barley and 22.34% for rice produced optimal results. Maximal conidial yield was recorded for rice at a pH of 7.01; at 7.06 for sorghum and at 6.76 for barley.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>17590331</pmid><doi>10.1016/j.biortech.2007.04.031</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-8524
ispartof Bioresource technology, 2008-04, Vol.99 (6), p.1530-1537
issn 0960-8524
1873-2976
language eng
recordid cdi_proquest_miscellaneous_70191635
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Aspergillus - metabolism
Biological and medical sciences
Bioreactors
Biotechnology
Biotechnology - instrumentation
Biotechnology - methods
Conidiospores
Fermentation
Fundamental and applied biological sciences. Psychology
Hordeum
Hordeum vulgare
Hydrogen-Ion Concentration
Industrial Microbiology
Metarhizium - metabolism
Metarhizium anisopliae
Methods. Procedures. Technologies
Microbial engineering. Fermentation and microbial culture technology
Models, Theoretical
Oryza
Oryza sativa
Regression Analysis
Reproducibility of Results
Response surface methodology
Solid-state fermentation
Sorghum
title Statistical optimization of process variables for the large-scale production of Metarhizium anisopliae conidiospores in solid-state fermentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T13%3A19%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Statistical%20optimization%20of%20process%20variables%20for%20the%20large-scale%20production%20of%20Metarhizium%20anisopliae%20conidiospores%20in%20solid-state%20fermentation&rft.jtitle=Bioresource%20technology&rft.au=Bhanu%20Prakash,%20G.V.S.&rft.date=2008-04-01&rft.volume=99&rft.issue=6&rft.spage=1530&rft.epage=1537&rft.pages=1530-1537&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2007.04.031&rft_dat=%3Cproquest_cross%3E70191635%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19656817&rft_id=info:pmid/17590331&rft_els_id=S0960852407003689&rfr_iscdi=true