Interrelationships between Dunaliella and halophilic prokaryotes in saltern crystallizer ponds

Thanks to their often very high population densities and their simple community structure, saltern crystallizer ponds form ideal sites to study the behavior of halophilic microorganisms in their natural environment at saturating salt concentrations. The microbial community is dominated by square red...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Extremophiles (Tokyo. Print) 2008-01, Vol.12 (1), p.5-14
Hauptverfasser: Elevi Bardavid, Rahel, Khristo, Polina, Oren, Aharon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue 1
container_start_page 5
container_title Extremophiles (Tokyo. Print)
container_volume 12
creator Elevi Bardavid, Rahel
Khristo, Polina
Oren, Aharon
description Thanks to their often very high population densities and their simple community structure, saltern crystallizer ponds form ideal sites to study the behavior of halophilic microorganisms in their natural environment at saturating salt concentrations. The microbial community is dominated by square red halophilic Archaea, recently isolated and described as Haloquadratum walsbyi, extremely halophilic red rod-shaped Bacteria of the genus Salinibacter, and the unicellular green alga Dunaliella as the primary producer. We review here, the information available on the microbial community structure of the saltern crystallizer brines and the interrelationships between the main components of their biota. As Dunaliella produces massive amounts of glycerol to provide osmotic stabilization, glycerol is often postulated to be the most important source of organic carbon for the heterotrophic prokaryotes in hypersaline ecosystems. We assess here, the current evidence for the possible importance of glycerol and other carbon sources in the nutrition of the Archaea and the Bacteria, the relative contribution of halophilic Bacteria and Archaea to the heterotrophic activity in the brines, and other factors that determine the nature of the microbial communities that thrive in the salt-saturated brines of saltern crystallizer ponds.
doi_str_mv 10.1007/s00792-006-0053-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70186233</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20896283</sourcerecordid><originalsourceid>FETCH-LOGICAL-c520t-5d5ee0996706cedf8d0b33c33da57151c50ebc59abcc82a7b14457ae9950170e3</originalsourceid><addsrcrecordid>eNqFkUtv1TAQhS0EoqXwA9hAhAS7wNiO43hZlVelSiygWyzHmfS6-NrBToQuvx6HXFGJBSz8kOab4-M5hDyl8JoCyDe5bIrVAG1ZgteHe-SUNpzXjQJ1__ed1tAKekIe5XwLQEUpPCQnVNKu5bQ9JV8vw4wpoTeziyHv3JSrHucfiKF6uwTjHXpvKhOGamd8nHbOO1tNKX4z6RBnzJULVTa-iITKpkOejffuJ6ZqimHIj8mD0fiMT47nGbl-_-7Lxcf66tOHy4vzq9oKBnMtBoEISrUSWovD2A3Qc245H4yQVFArAHsrlOmt7ZiRPW0aIQ0qJYBKQH5GXm26xdn3BfOs9y7b1XrAuGQtoXyYcf5fkEGnWtat4Iu_wNu4pDKQwlBWJlsMFIhukE0x54SjnpLbl8loCnqNSG8R6RKRXiPSh9Lz7Ci89Hsc7jqOmRTg5REw2Ro_JhOsy384tuooWDm2cbmUwg2mO4f_ev351jSaqM1NKsLXnxlQDtA1jSwj-gUpMLOa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>212143457</pqid></control><display><type>article</type><title>Interrelationships between Dunaliella and halophilic prokaryotes in saltern crystallizer ponds</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Elevi Bardavid, Rahel ; Khristo, Polina ; Oren, Aharon</creator><creatorcontrib>Elevi Bardavid, Rahel ; Khristo, Polina ; Oren, Aharon</creatorcontrib><description>Thanks to their often very high population densities and their simple community structure, saltern crystallizer ponds form ideal sites to study the behavior of halophilic microorganisms in their natural environment at saturating salt concentrations. The microbial community is dominated by square red halophilic Archaea, recently isolated and described as Haloquadratum walsbyi, extremely halophilic red rod-shaped Bacteria of the genus Salinibacter, and the unicellular green alga Dunaliella as the primary producer. We review here, the information available on the microbial community structure of the saltern crystallizer brines and the interrelationships between the main components of their biota. As Dunaliella produces massive amounts of glycerol to provide osmotic stabilization, glycerol is often postulated to be the most important source of organic carbon for the heterotrophic prokaryotes in hypersaline ecosystems. We assess here, the current evidence for the possible importance of glycerol and other carbon sources in the nutrition of the Archaea and the Bacteria, the relative contribution of halophilic Bacteria and Archaea to the heterotrophic activity in the brines, and other factors that determine the nature of the microbial communities that thrive in the salt-saturated brines of saltern crystallizer ponds.</description><identifier>ISSN: 1431-0651</identifier><identifier>EISSN: 1433-4909</identifier><identifier>DOI: 10.1007/s00792-006-0053-y</identifier><identifier>PMID: 17186316</identifier><language>eng</language><publisher>Japan: Japan : Springer Japan</publisher><subject>Adaptation, Physiological ; Animal, plant and microbial ecology ; Aquatic ecosystems ; Aquatic plants ; Archaea ; Archaea - growth &amp; development ; Bacteria ; Bacteria - growth &amp; development ; Biochemistry ; Biological and medical sciences ; Biomedical and Life Sciences ; Biota ; Biotechnology ; Brines ; Carbon sources ; Chlorophyta - growth &amp; development ; Community structure ; Dunaliella ; Ecosystem ; Fundamental and applied biological sciences. Psychology ; Glycerol - metabolism ; Haloquadratum ; Hypersaline ; Life Sciences ; Microbial activity ; Microbial Ecology ; Microbiology ; Microorganisms ; Natural environment ; Organic carbon ; Ponds ; Population density ; Prokaryotes ; Review ; Salinibacter ; Salinity ; Salterns ; Space life sciences ; Various environments (extraatmospheric space, air, water) ; Water Microbiology</subject><ispartof>Extremophiles (Tokyo. Print), 2008-01, Vol.12 (1), p.5-14</ispartof><rights>Springer 2006</rights><rights>2008 INIST-CNRS</rights><rights>Springer 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c520t-5d5ee0996706cedf8d0b33c33da57151c50ebc59abcc82a7b14457ae9950170e3</citedby><cites>FETCH-LOGICAL-c520t-5d5ee0996706cedf8d0b33c33da57151c50ebc59abcc82a7b14457ae9950170e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00792-006-0053-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00792-006-0053-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,23910,23911,25119,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20053906$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17186316$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Elevi Bardavid, Rahel</creatorcontrib><creatorcontrib>Khristo, Polina</creatorcontrib><creatorcontrib>Oren, Aharon</creatorcontrib><title>Interrelationships between Dunaliella and halophilic prokaryotes in saltern crystallizer ponds</title><title>Extremophiles (Tokyo. Print)</title><addtitle>Extremophiles</addtitle><addtitle>Extremophiles</addtitle><description>Thanks to their often very high population densities and their simple community structure, saltern crystallizer ponds form ideal sites to study the behavior of halophilic microorganisms in their natural environment at saturating salt concentrations. The microbial community is dominated by square red halophilic Archaea, recently isolated and described as Haloquadratum walsbyi, extremely halophilic red rod-shaped Bacteria of the genus Salinibacter, and the unicellular green alga Dunaliella as the primary producer. We review here, the information available on the microbial community structure of the saltern crystallizer brines and the interrelationships between the main components of their biota. As Dunaliella produces massive amounts of glycerol to provide osmotic stabilization, glycerol is often postulated to be the most important source of organic carbon for the heterotrophic prokaryotes in hypersaline ecosystems. We assess here, the current evidence for the possible importance of glycerol and other carbon sources in the nutrition of the Archaea and the Bacteria, the relative contribution of halophilic Bacteria and Archaea to the heterotrophic activity in the brines, and other factors that determine the nature of the microbial communities that thrive in the salt-saturated brines of saltern crystallizer ponds.</description><subject>Adaptation, Physiological</subject><subject>Animal, plant and microbial ecology</subject><subject>Aquatic ecosystems</subject><subject>Aquatic plants</subject><subject>Archaea</subject><subject>Archaea - growth &amp; development</subject><subject>Bacteria</subject><subject>Bacteria - growth &amp; development</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Biota</subject><subject>Biotechnology</subject><subject>Brines</subject><subject>Carbon sources</subject><subject>Chlorophyta - growth &amp; development</subject><subject>Community structure</subject><subject>Dunaliella</subject><subject>Ecosystem</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Glycerol - metabolism</subject><subject>Haloquadratum</subject><subject>Hypersaline</subject><subject>Life Sciences</subject><subject>Microbial activity</subject><subject>Microbial Ecology</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Natural environment</subject><subject>Organic carbon</subject><subject>Ponds</subject><subject>Population density</subject><subject>Prokaryotes</subject><subject>Review</subject><subject>Salinibacter</subject><subject>Salinity</subject><subject>Salterns</subject><subject>Space life sciences</subject><subject>Various environments (extraatmospheric space, air, water)</subject><subject>Water Microbiology</subject><issn>1431-0651</issn><issn>1433-4909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkUtv1TAQhS0EoqXwA9hAhAS7wNiO43hZlVelSiygWyzHmfS6-NrBToQuvx6HXFGJBSz8kOab4-M5hDyl8JoCyDe5bIrVAG1ZgteHe-SUNpzXjQJ1__ed1tAKekIe5XwLQEUpPCQnVNKu5bQ9JV8vw4wpoTeziyHv3JSrHucfiKF6uwTjHXpvKhOGamd8nHbOO1tNKX4z6RBnzJULVTa-iITKpkOejffuJ6ZqimHIj8mD0fiMT47nGbl-_-7Lxcf66tOHy4vzq9oKBnMtBoEISrUSWovD2A3Qc245H4yQVFArAHsrlOmt7ZiRPW0aIQ0qJYBKQH5GXm26xdn3BfOs9y7b1XrAuGQtoXyYcf5fkEGnWtat4Iu_wNu4pDKQwlBWJlsMFIhukE0x54SjnpLbl8loCnqNSG8R6RKRXiPSh9Lz7Ci89Hsc7jqOmRTg5REw2Ro_JhOsy384tuooWDm2cbmUwg2mO4f_ev351jSaqM1NKsLXnxlQDtA1jSwj-gUpMLOa</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Elevi Bardavid, Rahel</creator><creator>Khristo, Polina</creator><creator>Oren, Aharon</creator><general>Japan : Springer Japan</general><general>Springer Japan</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H95</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7T7</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20080101</creationdate><title>Interrelationships between Dunaliella and halophilic prokaryotes in saltern crystallizer ponds</title><author>Elevi Bardavid, Rahel ; Khristo, Polina ; Oren, Aharon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c520t-5d5ee0996706cedf8d0b33c33da57151c50ebc59abcc82a7b14457ae9950170e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adaptation, Physiological</topic><topic>Animal, plant and microbial ecology</topic><topic>Aquatic ecosystems</topic><topic>Aquatic plants</topic><topic>Archaea</topic><topic>Archaea - growth &amp; development</topic><topic>Bacteria</topic><topic>Bacteria - growth &amp; development</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Biota</topic><topic>Biotechnology</topic><topic>Brines</topic><topic>Carbon sources</topic><topic>Chlorophyta - growth &amp; development</topic><topic>Community structure</topic><topic>Dunaliella</topic><topic>Ecosystem</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Glycerol - metabolism</topic><topic>Haloquadratum</topic><topic>Hypersaline</topic><topic>Life Sciences</topic><topic>Microbial activity</topic><topic>Microbial Ecology</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Natural environment</topic><topic>Organic carbon</topic><topic>Ponds</topic><topic>Population density</topic><topic>Prokaryotes</topic><topic>Review</topic><topic>Salinibacter</topic><topic>Salinity</topic><topic>Salterns</topic><topic>Space life sciences</topic><topic>Various environments (extraatmospheric space, air, water)</topic><topic>Water Microbiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elevi Bardavid, Rahel</creatorcontrib><creatorcontrib>Khristo, Polina</creatorcontrib><creatorcontrib>Oren, Aharon</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Extremophiles (Tokyo. Print)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elevi Bardavid, Rahel</au><au>Khristo, Polina</au><au>Oren, Aharon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interrelationships between Dunaliella and halophilic prokaryotes in saltern crystallizer ponds</atitle><jtitle>Extremophiles (Tokyo. Print)</jtitle><stitle>Extremophiles</stitle><addtitle>Extremophiles</addtitle><date>2008-01-01</date><risdate>2008</risdate><volume>12</volume><issue>1</issue><spage>5</spage><epage>14</epage><pages>5-14</pages><issn>1431-0651</issn><eissn>1433-4909</eissn><abstract>Thanks to their often very high population densities and their simple community structure, saltern crystallizer ponds form ideal sites to study the behavior of halophilic microorganisms in their natural environment at saturating salt concentrations. The microbial community is dominated by square red halophilic Archaea, recently isolated and described as Haloquadratum walsbyi, extremely halophilic red rod-shaped Bacteria of the genus Salinibacter, and the unicellular green alga Dunaliella as the primary producer. We review here, the information available on the microbial community structure of the saltern crystallizer brines and the interrelationships between the main components of their biota. As Dunaliella produces massive amounts of glycerol to provide osmotic stabilization, glycerol is often postulated to be the most important source of organic carbon for the heterotrophic prokaryotes in hypersaline ecosystems. We assess here, the current evidence for the possible importance of glycerol and other carbon sources in the nutrition of the Archaea and the Bacteria, the relative contribution of halophilic Bacteria and Archaea to the heterotrophic activity in the brines, and other factors that determine the nature of the microbial communities that thrive in the salt-saturated brines of saltern crystallizer ponds.</abstract><cop>Japan</cop><pub>Japan : Springer Japan</pub><pmid>17186316</pmid><doi>10.1007/s00792-006-0053-y</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1431-0651
ispartof Extremophiles (Tokyo. Print), 2008-01, Vol.12 (1), p.5-14
issn 1431-0651
1433-4909
language eng
recordid cdi_proquest_miscellaneous_70186233
source MEDLINE; SpringerLink Journals
subjects Adaptation, Physiological
Animal, plant and microbial ecology
Aquatic ecosystems
Aquatic plants
Archaea
Archaea - growth & development
Bacteria
Bacteria - growth & development
Biochemistry
Biological and medical sciences
Biomedical and Life Sciences
Biota
Biotechnology
Brines
Carbon sources
Chlorophyta - growth & development
Community structure
Dunaliella
Ecosystem
Fundamental and applied biological sciences. Psychology
Glycerol - metabolism
Haloquadratum
Hypersaline
Life Sciences
Microbial activity
Microbial Ecology
Microbiology
Microorganisms
Natural environment
Organic carbon
Ponds
Population density
Prokaryotes
Review
Salinibacter
Salinity
Salterns
Space life sciences
Various environments (extraatmospheric space, air, water)
Water Microbiology
title Interrelationships between Dunaliella and halophilic prokaryotes in saltern crystallizer ponds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T13%3A51%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interrelationships%20between%20Dunaliella%20and%20halophilic%20prokaryotes%20in%20saltern%20crystallizer%20ponds&rft.jtitle=Extremophiles%20(Tokyo.%20Print)&rft.au=Elevi%20Bardavid,%20Rahel&rft.date=2008-01-01&rft.volume=12&rft.issue=1&rft.spage=5&rft.epage=14&rft.pages=5-14&rft.issn=1431-0651&rft.eissn=1433-4909&rft_id=info:doi/10.1007/s00792-006-0053-y&rft_dat=%3Cproquest_cross%3E20896283%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=212143457&rft_id=info:pmid/17186316&rfr_iscdi=true