Function of a novel GDSL-type pepper lipase gene, CaGLIP1, in disease susceptibility and abiotic stress tolerance
GDSL-type lipase is a hydrolytic enzyme whose amino acid sequence contains a pentapeptide motif (Gly-X-Ser-X-Gly) with active serine (Ser). Pepper GDSL-type lipase (CaGLIP1) gene was isolated and functionally characterized from pepper leaf tissues infected by Xanthomonas campestris pv. vesicatoria (...
Gespeichert in:
Veröffentlicht in: | Planta 2008-02, Vol.227 (3), p.539-558 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 558 |
---|---|
container_issue | 3 |
container_start_page | 539 |
container_title | Planta |
container_volume | 227 |
creator | Hong, Jeum Kyu Choi, Hyong Woo Hwang, In Sun Kim, Dae Sung Kim, Nak Hyun Choi, Du Seok Kim, Young Jin Hwang, Byung Kook |
description | GDSL-type lipase is a hydrolytic enzyme whose amino acid sequence contains a pentapeptide motif (Gly-X-Ser-X-Gly) with active serine (Ser). Pepper GDSL-type lipase (CaGLIP1) gene was isolated and functionally characterized from pepper leaf tissues infected by Xanthomonas campestris pv. vesicatoria (Xcv). The CaGLIP1 protein was located in the vascular tissues of Arabidopsis root. The CaGLIP1 gene was preferentially expressed in pepper leaves during the compatible interaction with Xcv. Treatment with salicylic acid, ethylene and methyl jasmonate induced CaGLIP1 gene expression in pepper leaves. Sodium nitroprusside, methyl viologen, high salt, mannitol-mediated dehydration and wounding also induced early and transient CaGLIP1 expression in pepper leaf tissues. Virus-induced gene silencing of CaGLIP1 in pepper conferred enhanced resistance to Xcv, accompanied by the suppressed expression of basic PR1 (CaBPR1) and defensin (CaDEF1) genes. The CaGLIP1 lipase produced in Escherichia coli hydrolyzed the substrates of short and long chain nitrophenyl esters. The CaGLIP1-overexpressing Arabidopsis exhibited enhanced hydrolytic activity toward short and long chain nitrophenyl ester, as well as enhanced susceptibility to the bacterial pathogen Pseudomonas syringae pv. tomato and the biotrophic oomycete Hyaloperonospora parasitica. SA-induced expression of AtPR1 and AtGST1, also was delayed in CaGLIP1-overexpressing plants by SA application. During seed germination and plant growth, the CaGLIP1 transgenic plants showed drought tolerance and differential expression of drought- and abscisic acid (ABA)-inducible genes AtRD29A, AtADH and AtRab18. ABA treatment differentially regulated seed germination and gene expression in wild-type and CaGLIP1 transgenic Arabidopsis. Overexpression of CaGLIP1 also regulated glucose- and oxidative stress signaling. Together, these results indicate that CaGLIP1 modulates disease susceptibility and abiotic stress tolerance. |
doi_str_mv | 10.1007/s00425-007-0637-5 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_70181694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23389889</jstor_id><sourcerecordid>23389889</sourcerecordid><originalsourceid>FETCH-LOGICAL-c559t-266380d67f0d6edaf5e3b81560ea35d9aa97314949f68b718052d92f3451b0193</originalsourceid><addsrcrecordid>eNp9kU1r3DAQhk1paTZpf0APbUWgPcXtyLJs6Vi2zTaw0EKas5Dt8aLFKzmSXNh_XxkvXcghF2ngfWbe-ciydxS-UID6awAoC56nMIeK1Tl_ka1oyYq8gFK8zFYAKQbJ-EV2GcIeIIl1_Tq7oLUsJPBilT3eTraNxlnieqKJdX9xIJvv99s8HkckI44jejKYUQckO7R4Q9Z6s737TW-IsaQzAWclTKHFMZrGDCYeibYd0Y1x0bQkRI8hkOgG9Nq2-CZ71esh4NvTf5U93P74s_6Zb39t7tbftnnLuYx5UVVMQFfVfXqw0z1H1gjKK0DNeCe1ljWjpSxlX4mmpiKN08miZyWnDVDJrrLPS93Ru8cJQ1QHk5ocBm3RTUHVQAWtZJnA6yfg3k3ept5UASAllYImiC5Q610IHns1enPQ_qgoqPkYajmGmsP5GIqnnA-nwlNzwO6ccdp-Aj6dAB1aPfTzfkz4zyV3ynklElcsXEiS3aE_d_ic-_slaR-i8-eijAkpxLyfj4vea6f0zifjh_sCKAMQZcnSzP8AmXKyNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200991981</pqid></control><display><type>article</type><title>Function of a novel GDSL-type pepper lipase gene, CaGLIP1, in disease susceptibility and abiotic stress tolerance</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Hong, Jeum Kyu ; Choi, Hyong Woo ; Hwang, In Sun ; Kim, Dae Sung ; Kim, Nak Hyun ; Choi, Du Seok ; Kim, Young Jin ; Hwang, Byung Kook</creator><creatorcontrib>Hong, Jeum Kyu ; Choi, Hyong Woo ; Hwang, In Sun ; Kim, Dae Sung ; Kim, Nak Hyun ; Choi, Du Seok ; Kim, Young Jin ; Hwang, Byung Kook</creatorcontrib><description>GDSL-type lipase is a hydrolytic enzyme whose amino acid sequence contains a pentapeptide motif (Gly-X-Ser-X-Gly) with active serine (Ser). Pepper GDSL-type lipase (CaGLIP1) gene was isolated and functionally characterized from pepper leaf tissues infected by Xanthomonas campestris pv. vesicatoria (Xcv). The CaGLIP1 protein was located in the vascular tissues of Arabidopsis root. The CaGLIP1 gene was preferentially expressed in pepper leaves during the compatible interaction with Xcv. Treatment with salicylic acid, ethylene and methyl jasmonate induced CaGLIP1 gene expression in pepper leaves. Sodium nitroprusside, methyl viologen, high salt, mannitol-mediated dehydration and wounding also induced early and transient CaGLIP1 expression in pepper leaf tissues. Virus-induced gene silencing of CaGLIP1 in pepper conferred enhanced resistance to Xcv, accompanied by the suppressed expression of basic PR1 (CaBPR1) and defensin (CaDEF1) genes. The CaGLIP1 lipase produced in Escherichia coli hydrolyzed the substrates of short and long chain nitrophenyl esters. The CaGLIP1-overexpressing Arabidopsis exhibited enhanced hydrolytic activity toward short and long chain nitrophenyl ester, as well as enhanced susceptibility to the bacterial pathogen Pseudomonas syringae pv. tomato and the biotrophic oomycete Hyaloperonospora parasitica. SA-induced expression of AtPR1 and AtGST1, also was delayed in CaGLIP1-overexpressing plants by SA application. During seed germination and plant growth, the CaGLIP1 transgenic plants showed drought tolerance and differential expression of drought- and abscisic acid (ABA)-inducible genes AtRD29A, AtADH and AtRab18. ABA treatment differentially regulated seed germination and gene expression in wild-type and CaGLIP1 transgenic Arabidopsis. Overexpression of CaGLIP1 also regulated glucose- and oxidative stress signaling. Together, these results indicate that CaGLIP1 modulates disease susceptibility and abiotic stress tolerance.</description><identifier>ISSN: 0032-0935</identifier><identifier>EISSN: 1432-2048</identifier><identifier>DOI: 10.1007/s00425-007-0637-5</identifier><identifier>PMID: 17929052</identifier><identifier>CODEN: PLANAB</identifier><language>eng</language><publisher>Berlin/Heidelberg: Berlin/Heidelberg : Springer-Verlag</publisher><subject>Abscisic Acid - physiology ; Adaptation to environment and cultivation conditions ; Adaptation, Physiological ; Agriculture ; Agronomy. Soil science and plant productions ; Amino Acid Sequence ; Amino acids ; Arabidopsis - microbiology ; Arabidopsis - physiology ; Biological and medical sciences ; Biomedical and Life Sciences ; Capsicum - microbiology ; Capsicum - physiology ; Dehydration ; Drought resistance ; E coli ; Ecology ; Esters ; Forestry ; Fundamental and applied biological sciences. Psychology ; Gene Expression ; Gene Silencing ; Genetics and breeding of economic plants ; Glucose ; Host-Pathogen Interactions - physiology ; Infections ; Inoculation ; Leaves ; Life Sciences ; Lipase - genetics ; Lipase - isolation & purification ; Lipase - metabolism ; Molecular Sequence Data ; Original Article ; Oxidation-Reduction ; Oxidative stress ; Pathogens ; Peppers ; Plant Diseases - immunology ; Plant Diseases - microbiology ; Plant growth ; Plant Sciences ; Plant tissues ; Plants ; Plants, Genetically Modified - metabolism ; Recombinant Proteins - isolation & purification ; Recombinant Proteins - metabolism ; RNA ; Seed germination ; Sequence Analysis, DNA ; Tomatoes ; Transgenic plants ; Varietal selection. Specialized plant breeding, plant breeding aims ; Vegetables ; Water - physiology ; Xanthomonas campestris - physiology</subject><ispartof>Planta, 2008-02, Vol.227 (3), p.539-558</ispartof><rights>Springer-Verlag Berlin Heidelberg 2008</rights><rights>Springer-Verlag 2007</rights><rights>2008 INIST-CNRS</rights><rights>Springer-Verlag 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c559t-266380d67f0d6edaf5e3b81560ea35d9aa97314949f68b718052d92f3451b0193</citedby><cites>FETCH-LOGICAL-c559t-266380d67f0d6edaf5e3b81560ea35d9aa97314949f68b718052d92f3451b0193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23389889$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23389889$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,27901,27902,41464,42533,51294,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20015568$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17929052$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hong, Jeum Kyu</creatorcontrib><creatorcontrib>Choi, Hyong Woo</creatorcontrib><creatorcontrib>Hwang, In Sun</creatorcontrib><creatorcontrib>Kim, Dae Sung</creatorcontrib><creatorcontrib>Kim, Nak Hyun</creatorcontrib><creatorcontrib>Choi, Du Seok</creatorcontrib><creatorcontrib>Kim, Young Jin</creatorcontrib><creatorcontrib>Hwang, Byung Kook</creatorcontrib><title>Function of a novel GDSL-type pepper lipase gene, CaGLIP1, in disease susceptibility and abiotic stress tolerance</title><title>Planta</title><addtitle>Planta</addtitle><addtitle>Planta</addtitle><description>GDSL-type lipase is a hydrolytic enzyme whose amino acid sequence contains a pentapeptide motif (Gly-X-Ser-X-Gly) with active serine (Ser). Pepper GDSL-type lipase (CaGLIP1) gene was isolated and functionally characterized from pepper leaf tissues infected by Xanthomonas campestris pv. vesicatoria (Xcv). The CaGLIP1 protein was located in the vascular tissues of Arabidopsis root. The CaGLIP1 gene was preferentially expressed in pepper leaves during the compatible interaction with Xcv. Treatment with salicylic acid, ethylene and methyl jasmonate induced CaGLIP1 gene expression in pepper leaves. Sodium nitroprusside, methyl viologen, high salt, mannitol-mediated dehydration and wounding also induced early and transient CaGLIP1 expression in pepper leaf tissues. Virus-induced gene silencing of CaGLIP1 in pepper conferred enhanced resistance to Xcv, accompanied by the suppressed expression of basic PR1 (CaBPR1) and defensin (CaDEF1) genes. The CaGLIP1 lipase produced in Escherichia coli hydrolyzed the substrates of short and long chain nitrophenyl esters. The CaGLIP1-overexpressing Arabidopsis exhibited enhanced hydrolytic activity toward short and long chain nitrophenyl ester, as well as enhanced susceptibility to the bacterial pathogen Pseudomonas syringae pv. tomato and the biotrophic oomycete Hyaloperonospora parasitica. SA-induced expression of AtPR1 and AtGST1, also was delayed in CaGLIP1-overexpressing plants by SA application. During seed germination and plant growth, the CaGLIP1 transgenic plants showed drought tolerance and differential expression of drought- and abscisic acid (ABA)-inducible genes AtRD29A, AtADH and AtRab18. ABA treatment differentially regulated seed germination and gene expression in wild-type and CaGLIP1 transgenic Arabidopsis. Overexpression of CaGLIP1 also regulated glucose- and oxidative stress signaling. Together, these results indicate that CaGLIP1 modulates disease susceptibility and abiotic stress tolerance.</description><subject>Abscisic Acid - physiology</subject><subject>Adaptation to environment and cultivation conditions</subject><subject>Adaptation, Physiological</subject><subject>Agriculture</subject><subject>Agronomy. Soil science and plant productions</subject><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Arabidopsis - microbiology</subject><subject>Arabidopsis - physiology</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Capsicum - microbiology</subject><subject>Capsicum - physiology</subject><subject>Dehydration</subject><subject>Drought resistance</subject><subject>E coli</subject><subject>Ecology</subject><subject>Esters</subject><subject>Forestry</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression</subject><subject>Gene Silencing</subject><subject>Genetics and breeding of economic plants</subject><subject>Glucose</subject><subject>Host-Pathogen Interactions - physiology</subject><subject>Infections</subject><subject>Inoculation</subject><subject>Leaves</subject><subject>Life Sciences</subject><subject>Lipase - genetics</subject><subject>Lipase - isolation & purification</subject><subject>Lipase - metabolism</subject><subject>Molecular Sequence Data</subject><subject>Original Article</subject><subject>Oxidation-Reduction</subject><subject>Oxidative stress</subject><subject>Pathogens</subject><subject>Peppers</subject><subject>Plant Diseases - immunology</subject><subject>Plant Diseases - microbiology</subject><subject>Plant growth</subject><subject>Plant Sciences</subject><subject>Plant tissues</subject><subject>Plants</subject><subject>Plants, Genetically Modified - metabolism</subject><subject>Recombinant Proteins - isolation & purification</subject><subject>Recombinant Proteins - metabolism</subject><subject>RNA</subject><subject>Seed germination</subject><subject>Sequence Analysis, DNA</subject><subject>Tomatoes</subject><subject>Transgenic plants</subject><subject>Varietal selection. Specialized plant breeding, plant breeding aims</subject><subject>Vegetables</subject><subject>Water - physiology</subject><subject>Xanthomonas campestris - physiology</subject><issn>0032-0935</issn><issn>1432-2048</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU1r3DAQhk1paTZpf0APbUWgPcXtyLJs6Vi2zTaw0EKas5Dt8aLFKzmSXNh_XxkvXcghF2ngfWbe-ciydxS-UID6awAoC56nMIeK1Tl_ka1oyYq8gFK8zFYAKQbJ-EV2GcIeIIl1_Tq7oLUsJPBilT3eTraNxlnieqKJdX9xIJvv99s8HkckI44jejKYUQckO7R4Q9Z6s737TW-IsaQzAWclTKHFMZrGDCYeibYd0Y1x0bQkRI8hkOgG9Nq2-CZ71esh4NvTf5U93P74s_6Zb39t7tbftnnLuYx5UVVMQFfVfXqw0z1H1gjKK0DNeCe1ljWjpSxlX4mmpiKN08miZyWnDVDJrrLPS93Ru8cJQ1QHk5ocBm3RTUHVQAWtZJnA6yfg3k3ept5UASAllYImiC5Q610IHns1enPQ_qgoqPkYajmGmsP5GIqnnA-nwlNzwO6ccdp-Aj6dAB1aPfTzfkz4zyV3ynklElcsXEiS3aE_d_ic-_slaR-i8-eijAkpxLyfj4vea6f0zifjh_sCKAMQZcnSzP8AmXKyNQ</recordid><startdate>20080201</startdate><enddate>20080201</enddate><creator>Hong, Jeum Kyu</creator><creator>Choi, Hyong Woo</creator><creator>Hwang, In Sun</creator><creator>Kim, Dae Sung</creator><creator>Kim, Nak Hyun</creator><creator>Choi, Du Seok</creator><creator>Kim, Young Jin</creator><creator>Hwang, Byung Kook</creator><general>Berlin/Heidelberg : Springer-Verlag</general><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20080201</creationdate><title>Function of a novel GDSL-type pepper lipase gene, CaGLIP1, in disease susceptibility and abiotic stress tolerance</title><author>Hong, Jeum Kyu ; Choi, Hyong Woo ; Hwang, In Sun ; Kim, Dae Sung ; Kim, Nak Hyun ; Choi, Du Seok ; Kim, Young Jin ; Hwang, Byung Kook</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c559t-266380d67f0d6edaf5e3b81560ea35d9aa97314949f68b718052d92f3451b0193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Abscisic Acid - physiology</topic><topic>Adaptation to environment and cultivation conditions</topic><topic>Adaptation, Physiological</topic><topic>Agriculture</topic><topic>Agronomy. Soil science and plant productions</topic><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Arabidopsis - microbiology</topic><topic>Arabidopsis - physiology</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Capsicum - microbiology</topic><topic>Capsicum - physiology</topic><topic>Dehydration</topic><topic>Drought resistance</topic><topic>E coli</topic><topic>Ecology</topic><topic>Esters</topic><topic>Forestry</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression</topic><topic>Gene Silencing</topic><topic>Genetics and breeding of economic plants</topic><topic>Glucose</topic><topic>Host-Pathogen Interactions - physiology</topic><topic>Infections</topic><topic>Inoculation</topic><topic>Leaves</topic><topic>Life Sciences</topic><topic>Lipase - genetics</topic><topic>Lipase - isolation & purification</topic><topic>Lipase - metabolism</topic><topic>Molecular Sequence Data</topic><topic>Original Article</topic><topic>Oxidation-Reduction</topic><topic>Oxidative stress</topic><topic>Pathogens</topic><topic>Peppers</topic><topic>Plant Diseases - immunology</topic><topic>Plant Diseases - microbiology</topic><topic>Plant growth</topic><topic>Plant Sciences</topic><topic>Plant tissues</topic><topic>Plants</topic><topic>Plants, Genetically Modified - metabolism</topic><topic>Recombinant Proteins - isolation & purification</topic><topic>Recombinant Proteins - metabolism</topic><topic>RNA</topic><topic>Seed germination</topic><topic>Sequence Analysis, DNA</topic><topic>Tomatoes</topic><topic>Transgenic plants</topic><topic>Varietal selection. Specialized plant breeding, plant breeding aims</topic><topic>Vegetables</topic><topic>Water - physiology</topic><topic>Xanthomonas campestris - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hong, Jeum Kyu</creatorcontrib><creatorcontrib>Choi, Hyong Woo</creatorcontrib><creatorcontrib>Hwang, In Sun</creatorcontrib><creatorcontrib>Kim, Dae Sung</creatorcontrib><creatorcontrib>Kim, Nak Hyun</creatorcontrib><creatorcontrib>Choi, Du Seok</creatorcontrib><creatorcontrib>Kim, Young Jin</creatorcontrib><creatorcontrib>Hwang, Byung Kook</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Planta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hong, Jeum Kyu</au><au>Choi, Hyong Woo</au><au>Hwang, In Sun</au><au>Kim, Dae Sung</au><au>Kim, Nak Hyun</au><au>Choi, Du Seok</au><au>Kim, Young Jin</au><au>Hwang, Byung Kook</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Function of a novel GDSL-type pepper lipase gene, CaGLIP1, in disease susceptibility and abiotic stress tolerance</atitle><jtitle>Planta</jtitle><stitle>Planta</stitle><addtitle>Planta</addtitle><date>2008-02-01</date><risdate>2008</risdate><volume>227</volume><issue>3</issue><spage>539</spage><epage>558</epage><pages>539-558</pages><issn>0032-0935</issn><eissn>1432-2048</eissn><coden>PLANAB</coden><abstract>GDSL-type lipase is a hydrolytic enzyme whose amino acid sequence contains a pentapeptide motif (Gly-X-Ser-X-Gly) with active serine (Ser). Pepper GDSL-type lipase (CaGLIP1) gene was isolated and functionally characterized from pepper leaf tissues infected by Xanthomonas campestris pv. vesicatoria (Xcv). The CaGLIP1 protein was located in the vascular tissues of Arabidopsis root. The CaGLIP1 gene was preferentially expressed in pepper leaves during the compatible interaction with Xcv. Treatment with salicylic acid, ethylene and methyl jasmonate induced CaGLIP1 gene expression in pepper leaves. Sodium nitroprusside, methyl viologen, high salt, mannitol-mediated dehydration and wounding also induced early and transient CaGLIP1 expression in pepper leaf tissues. Virus-induced gene silencing of CaGLIP1 in pepper conferred enhanced resistance to Xcv, accompanied by the suppressed expression of basic PR1 (CaBPR1) and defensin (CaDEF1) genes. The CaGLIP1 lipase produced in Escherichia coli hydrolyzed the substrates of short and long chain nitrophenyl esters. The CaGLIP1-overexpressing Arabidopsis exhibited enhanced hydrolytic activity toward short and long chain nitrophenyl ester, as well as enhanced susceptibility to the bacterial pathogen Pseudomonas syringae pv. tomato and the biotrophic oomycete Hyaloperonospora parasitica. SA-induced expression of AtPR1 and AtGST1, also was delayed in CaGLIP1-overexpressing plants by SA application. During seed germination and plant growth, the CaGLIP1 transgenic plants showed drought tolerance and differential expression of drought- and abscisic acid (ABA)-inducible genes AtRD29A, AtADH and AtRab18. ABA treatment differentially regulated seed germination and gene expression in wild-type and CaGLIP1 transgenic Arabidopsis. Overexpression of CaGLIP1 also regulated glucose- and oxidative stress signaling. Together, these results indicate that CaGLIP1 modulates disease susceptibility and abiotic stress tolerance.</abstract><cop>Berlin/Heidelberg</cop><pub>Berlin/Heidelberg : Springer-Verlag</pub><pmid>17929052</pmid><doi>10.1007/s00425-007-0637-5</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0935 |
ispartof | Planta, 2008-02, Vol.227 (3), p.539-558 |
issn | 0032-0935 1432-2048 |
language | eng |
recordid | cdi_proquest_miscellaneous_70181694 |
source | Jstor Complete Legacy; MEDLINE; SpringerLink Journals |
subjects | Abscisic Acid - physiology Adaptation to environment and cultivation conditions Adaptation, Physiological Agriculture Agronomy. Soil science and plant productions Amino Acid Sequence Amino acids Arabidopsis - microbiology Arabidopsis - physiology Biological and medical sciences Biomedical and Life Sciences Capsicum - microbiology Capsicum - physiology Dehydration Drought resistance E coli Ecology Esters Forestry Fundamental and applied biological sciences. Psychology Gene Expression Gene Silencing Genetics and breeding of economic plants Glucose Host-Pathogen Interactions - physiology Infections Inoculation Leaves Life Sciences Lipase - genetics Lipase - isolation & purification Lipase - metabolism Molecular Sequence Data Original Article Oxidation-Reduction Oxidative stress Pathogens Peppers Plant Diseases - immunology Plant Diseases - microbiology Plant growth Plant Sciences Plant tissues Plants Plants, Genetically Modified - metabolism Recombinant Proteins - isolation & purification Recombinant Proteins - metabolism RNA Seed germination Sequence Analysis, DNA Tomatoes Transgenic plants Varietal selection. Specialized plant breeding, plant breeding aims Vegetables Water - physiology Xanthomonas campestris - physiology |
title | Function of a novel GDSL-type pepper lipase gene, CaGLIP1, in disease susceptibility and abiotic stress tolerance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T10%3A55%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Function%20of%20a%20novel%20GDSL-type%20pepper%20lipase%20gene,%20CaGLIP1,%20in%20disease%20susceptibility%20and%20abiotic%20stress%20tolerance&rft.jtitle=Planta&rft.au=Hong,%20Jeum%20Kyu&rft.date=2008-02-01&rft.volume=227&rft.issue=3&rft.spage=539&rft.epage=558&rft.pages=539-558&rft.issn=0032-0935&rft.eissn=1432-2048&rft.coden=PLANAB&rft_id=info:doi/10.1007/s00425-007-0637-5&rft_dat=%3Cjstor_proqu%3E23389889%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=200991981&rft_id=info:pmid/17929052&rft_jstor_id=23389889&rfr_iscdi=true |