A Liquid-Ga-Filled Carbon Nanotube: A Miniaturized Temperature Sensor and Electrical Switch
Temperature control on the nanometer scale is a challenging task in many physical, chemical, and material science applications where small experimental volumes with high temperature gradients are used. The crucial difficulty is reducing the size of temperature sensors while keeping their sensitivity...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2005-11, Vol.1 (11), p.1088-1093 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1093 |
---|---|
container_issue | 11 |
container_start_page | 1088 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 1 |
creator | Dorozhkin, Pavel S. Tovstonog, Sergey V. Golberg, Dmitri Zhan, Jinhua Ishikawa, Yiji Shiozawa, Masahiro Nakanishi, Haruyuki Nakata, Keiichi Bando, Yoshio |
description | Temperature control on the nanometer scale is a challenging task in many physical, chemical, and material science applications where small experimental volumes with high temperature gradients are used. The crucial difficulty is reducing the size of temperature sensors while keeping their sensitivity, working temperature range, and, most importantly, their simplicity and accuracy of temperature reading. In this work, we demonstrate the ultimate miniaturization of the classic thermometer using an expanding column of liquid gallium inside a multi‐walled C nanotube for precise temperature measurements. We report that electrical conductivity through unfilled nanotube regions is diffusive with a resistance per unit length of ≈10 kΩ μm−1, whereas Ga‐filled segments of the nanotube show metallic behavior with a low resistance of ≈100 Ω μm−1. No noticeable Schottky barrier exists between the nanotube carbon shell and the inner Ga filling. Based on these findings, an individual carbon nanotube partially filled with liquid Ga is used as a temperature sensor and/or switch. The nanotube’s electrical resistance decreases linearly with increasing temperature as the metallic Ga column expands inside the tube channel. In addition, the tube resistance drops sharply when two encapsulated Ga columns approaching each other meet inside the nanotube, producing a switching action that can occur at any predetermined temperature, as the Ga column position inside the nanotube can be effectively pre‐adjusted by nanoindentation using an atomic force microscope.
The electrical resistance of individual multi‐walled carbon nanotubes decreases linearly with increasing temperature as a metallic Ga column expands inside the tube channel. Tube resistance also drops sharply when two encapsulated Ga columns, approaching each other, meet inside the nanotube (see Figure), producing a switching action that can occur at any predetermined temperature; the Ga‐column position inside the nanotube can be effectively pre‐adjusted by nanoindentation using an atomic force microscope. |
doi_str_mv | 10.1002/smll.200500154 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70180997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70180997</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3334-c75e8c050c79cf7d4703687bd78caaa806490ff7f483420810c8db8ced2910743</originalsourceid><addsrcrecordid>eNqFkL1v2zAQxYmgRZKmWTsWnLrJPYqUSGUzDMcpoDiDE3TIQFDUCWVDSQ4pIR9_fWXYcLt1ujvc7z3gPUK-MJgxgPR7bL2fpQAZAMvECTlnOeNJrtLiw3FncEY-xfgbgLNUyFNyxiQruAB2Th7ntHTPo6uTlUmunfdY04UJVd_Rten6Yazwis7preucGcbg3qf_PbZbDLsT6Qa72AdqupouPdohOGs83by4wf76TD42xke8PMwL8nC9vF_cJOXd6sdiXiaWcy4SKzNUdkpgZWEbWQsJPFeyqqWyxhgFuSigaWQjFBcpTHGsqitlsU4LBlLwC_Jt77sN_fOIcdCtixa9Nx32Y9QSmIKikBM424M29DEGbPQ2uNaEN81A7-rUuzr1sc5J8PXgPFYt1n_xQ38TUOyBF-fx7T92enNblv-aJ3utiwO-HrUmPOlccpnpn-uVBqVYub4BnfE_Bc6PkQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70180997</pqid></control><display><type>article</type><title>A Liquid-Ga-Filled Carbon Nanotube: A Miniaturized Temperature Sensor and Electrical Switch</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Dorozhkin, Pavel S. ; Tovstonog, Sergey V. ; Golberg, Dmitri ; Zhan, Jinhua ; Ishikawa, Yiji ; Shiozawa, Masahiro ; Nakanishi, Haruyuki ; Nakata, Keiichi ; Bando, Yoshio</creator><creatorcontrib>Dorozhkin, Pavel S. ; Tovstonog, Sergey V. ; Golberg, Dmitri ; Zhan, Jinhua ; Ishikawa, Yiji ; Shiozawa, Masahiro ; Nakanishi, Haruyuki ; Nakata, Keiichi ; Bando, Yoshio</creatorcontrib><description>Temperature control on the nanometer scale is a challenging task in many physical, chemical, and material science applications where small experimental volumes with high temperature gradients are used. The crucial difficulty is reducing the size of temperature sensors while keeping their sensitivity, working temperature range, and, most importantly, their simplicity and accuracy of temperature reading. In this work, we demonstrate the ultimate miniaturization of the classic thermometer using an expanding column of liquid gallium inside a multi‐walled C nanotube for precise temperature measurements. We report that electrical conductivity through unfilled nanotube regions is diffusive with a resistance per unit length of ≈10 kΩ μm−1, whereas Ga‐filled segments of the nanotube show metallic behavior with a low resistance of ≈100 Ω μm−1. No noticeable Schottky barrier exists between the nanotube carbon shell and the inner Ga filling. Based on these findings, an individual carbon nanotube partially filled with liquid Ga is used as a temperature sensor and/or switch. The nanotube’s electrical resistance decreases linearly with increasing temperature as the metallic Ga column expands inside the tube channel. In addition, the tube resistance drops sharply when two encapsulated Ga columns approaching each other meet inside the nanotube, producing a switching action that can occur at any predetermined temperature, as the Ga column position inside the nanotube can be effectively pre‐adjusted by nanoindentation using an atomic force microscope.
The electrical resistance of individual multi‐walled carbon nanotubes decreases linearly with increasing temperature as a metallic Ga column expands inside the tube channel. Tube resistance also drops sharply when two encapsulated Ga columns, approaching each other, meet inside the nanotube (see Figure), producing a switching action that can occur at any predetermined temperature; the Ga‐column position inside the nanotube can be effectively pre‐adjusted by nanoindentation using an atomic force microscope.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.200500154</identifier><identifier>PMID: 17193401</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Biosensing Techniques ; carbon nanotubes ; Diffusion ; Electric Conductivity ; electrical resistance ; Electrochemistry - methods ; force microscopy ; Gallium - chemistry ; Materials Testing ; Microscopy, Atomic Force ; Microscopy, Electron, Scanning ; Microscopy, Electron, Transmission ; Nanotechnology - instrumentation ; Nanotechnology - methods ; Nanotubes - chemistry ; Nanotubes, Carbon - chemistry ; Semiconductors ; sensors ; switches ; Temperature</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2005-11, Vol.1 (11), p.1088-1093</ispartof><rights>Copyright © 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3334-c75e8c050c79cf7d4703687bd78caaa806490ff7f483420810c8db8ced2910743</citedby><cites>FETCH-LOGICAL-c3334-c75e8c050c79cf7d4703687bd78caaa806490ff7f483420810c8db8ced2910743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.200500154$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.200500154$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17193401$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dorozhkin, Pavel S.</creatorcontrib><creatorcontrib>Tovstonog, Sergey V.</creatorcontrib><creatorcontrib>Golberg, Dmitri</creatorcontrib><creatorcontrib>Zhan, Jinhua</creatorcontrib><creatorcontrib>Ishikawa, Yiji</creatorcontrib><creatorcontrib>Shiozawa, Masahiro</creatorcontrib><creatorcontrib>Nakanishi, Haruyuki</creatorcontrib><creatorcontrib>Nakata, Keiichi</creatorcontrib><creatorcontrib>Bando, Yoshio</creatorcontrib><title>A Liquid-Ga-Filled Carbon Nanotube: A Miniaturized Temperature Sensor and Electrical Switch</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Temperature control on the nanometer scale is a challenging task in many physical, chemical, and material science applications where small experimental volumes with high temperature gradients are used. The crucial difficulty is reducing the size of temperature sensors while keeping their sensitivity, working temperature range, and, most importantly, their simplicity and accuracy of temperature reading. In this work, we demonstrate the ultimate miniaturization of the classic thermometer using an expanding column of liquid gallium inside a multi‐walled C nanotube for precise temperature measurements. We report that electrical conductivity through unfilled nanotube regions is diffusive with a resistance per unit length of ≈10 kΩ μm−1, whereas Ga‐filled segments of the nanotube show metallic behavior with a low resistance of ≈100 Ω μm−1. No noticeable Schottky barrier exists between the nanotube carbon shell and the inner Ga filling. Based on these findings, an individual carbon nanotube partially filled with liquid Ga is used as a temperature sensor and/or switch. The nanotube’s electrical resistance decreases linearly with increasing temperature as the metallic Ga column expands inside the tube channel. In addition, the tube resistance drops sharply when two encapsulated Ga columns approaching each other meet inside the nanotube, producing a switching action that can occur at any predetermined temperature, as the Ga column position inside the nanotube can be effectively pre‐adjusted by nanoindentation using an atomic force microscope.
The electrical resistance of individual multi‐walled carbon nanotubes decreases linearly with increasing temperature as a metallic Ga column expands inside the tube channel. Tube resistance also drops sharply when two encapsulated Ga columns, approaching each other, meet inside the nanotube (see Figure), producing a switching action that can occur at any predetermined temperature; the Ga‐column position inside the nanotube can be effectively pre‐adjusted by nanoindentation using an atomic force microscope.</description><subject>Biosensing Techniques</subject><subject>carbon nanotubes</subject><subject>Diffusion</subject><subject>Electric Conductivity</subject><subject>electrical resistance</subject><subject>Electrochemistry - methods</subject><subject>force microscopy</subject><subject>Gallium - chemistry</subject><subject>Materials Testing</subject><subject>Microscopy, Atomic Force</subject><subject>Microscopy, Electron, Scanning</subject><subject>Microscopy, Electron, Transmission</subject><subject>Nanotechnology - instrumentation</subject><subject>Nanotechnology - methods</subject><subject>Nanotubes - chemistry</subject><subject>Nanotubes, Carbon - chemistry</subject><subject>Semiconductors</subject><subject>sensors</subject><subject>switches</subject><subject>Temperature</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkL1v2zAQxYmgRZKmWTsWnLrJPYqUSGUzDMcpoDiDE3TIQFDUCWVDSQ4pIR9_fWXYcLt1ujvc7z3gPUK-MJgxgPR7bL2fpQAZAMvECTlnOeNJrtLiw3FncEY-xfgbgLNUyFNyxiQruAB2Th7ntHTPo6uTlUmunfdY04UJVd_Rten6Yazwis7preucGcbg3qf_PbZbDLsT6Qa72AdqupouPdohOGs83by4wf76TD42xke8PMwL8nC9vF_cJOXd6sdiXiaWcy4SKzNUdkpgZWEbWQsJPFeyqqWyxhgFuSigaWQjFBcpTHGsqitlsU4LBlLwC_Jt77sN_fOIcdCtixa9Nx32Y9QSmIKikBM424M29DEGbPQ2uNaEN81A7-rUuzr1sc5J8PXgPFYt1n_xQ38TUOyBF-fx7T92enNblv-aJ3utiwO-HrUmPOlccpnpn-uVBqVYub4BnfE_Bc6PkQ</recordid><startdate>200511</startdate><enddate>200511</enddate><creator>Dorozhkin, Pavel S.</creator><creator>Tovstonog, Sergey V.</creator><creator>Golberg, Dmitri</creator><creator>Zhan, Jinhua</creator><creator>Ishikawa, Yiji</creator><creator>Shiozawa, Masahiro</creator><creator>Nakanishi, Haruyuki</creator><creator>Nakata, Keiichi</creator><creator>Bando, Yoshio</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200511</creationdate><title>A Liquid-Ga-Filled Carbon Nanotube: A Miniaturized Temperature Sensor and Electrical Switch</title><author>Dorozhkin, Pavel S. ; Tovstonog, Sergey V. ; Golberg, Dmitri ; Zhan, Jinhua ; Ishikawa, Yiji ; Shiozawa, Masahiro ; Nakanishi, Haruyuki ; Nakata, Keiichi ; Bando, Yoshio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3334-c75e8c050c79cf7d4703687bd78caaa806490ff7f483420810c8db8ced2910743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Biosensing Techniques</topic><topic>carbon nanotubes</topic><topic>Diffusion</topic><topic>Electric Conductivity</topic><topic>electrical resistance</topic><topic>Electrochemistry - methods</topic><topic>force microscopy</topic><topic>Gallium - chemistry</topic><topic>Materials Testing</topic><topic>Microscopy, Atomic Force</topic><topic>Microscopy, Electron, Scanning</topic><topic>Microscopy, Electron, Transmission</topic><topic>Nanotechnology - instrumentation</topic><topic>Nanotechnology - methods</topic><topic>Nanotubes - chemistry</topic><topic>Nanotubes, Carbon - chemistry</topic><topic>Semiconductors</topic><topic>sensors</topic><topic>switches</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dorozhkin, Pavel S.</creatorcontrib><creatorcontrib>Tovstonog, Sergey V.</creatorcontrib><creatorcontrib>Golberg, Dmitri</creatorcontrib><creatorcontrib>Zhan, Jinhua</creatorcontrib><creatorcontrib>Ishikawa, Yiji</creatorcontrib><creatorcontrib>Shiozawa, Masahiro</creatorcontrib><creatorcontrib>Nakanishi, Haruyuki</creatorcontrib><creatorcontrib>Nakata, Keiichi</creatorcontrib><creatorcontrib>Bando, Yoshio</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dorozhkin, Pavel S.</au><au>Tovstonog, Sergey V.</au><au>Golberg, Dmitri</au><au>Zhan, Jinhua</au><au>Ishikawa, Yiji</au><au>Shiozawa, Masahiro</au><au>Nakanishi, Haruyuki</au><au>Nakata, Keiichi</au><au>Bando, Yoshio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Liquid-Ga-Filled Carbon Nanotube: A Miniaturized Temperature Sensor and Electrical Switch</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2005-11</date><risdate>2005</risdate><volume>1</volume><issue>11</issue><spage>1088</spage><epage>1093</epage><pages>1088-1093</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Temperature control on the nanometer scale is a challenging task in many physical, chemical, and material science applications where small experimental volumes with high temperature gradients are used. The crucial difficulty is reducing the size of temperature sensors while keeping their sensitivity, working temperature range, and, most importantly, their simplicity and accuracy of temperature reading. In this work, we demonstrate the ultimate miniaturization of the classic thermometer using an expanding column of liquid gallium inside a multi‐walled C nanotube for precise temperature measurements. We report that electrical conductivity through unfilled nanotube regions is diffusive with a resistance per unit length of ≈10 kΩ μm−1, whereas Ga‐filled segments of the nanotube show metallic behavior with a low resistance of ≈100 Ω μm−1. No noticeable Schottky barrier exists between the nanotube carbon shell and the inner Ga filling. Based on these findings, an individual carbon nanotube partially filled with liquid Ga is used as a temperature sensor and/or switch. The nanotube’s electrical resistance decreases linearly with increasing temperature as the metallic Ga column expands inside the tube channel. In addition, the tube resistance drops sharply when two encapsulated Ga columns approaching each other meet inside the nanotube, producing a switching action that can occur at any predetermined temperature, as the Ga column position inside the nanotube can be effectively pre‐adjusted by nanoindentation using an atomic force microscope.
The electrical resistance of individual multi‐walled carbon nanotubes decreases linearly with increasing temperature as a metallic Ga column expands inside the tube channel. Tube resistance also drops sharply when two encapsulated Ga columns, approaching each other, meet inside the nanotube (see Figure), producing a switching action that can occur at any predetermined temperature; the Ga‐column position inside the nanotube can be effectively pre‐adjusted by nanoindentation using an atomic force microscope.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>17193401</pmid><doi>10.1002/smll.200500154</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2005-11, Vol.1 (11), p.1088-1093 |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_70180997 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Biosensing Techniques carbon nanotubes Diffusion Electric Conductivity electrical resistance Electrochemistry - methods force microscopy Gallium - chemistry Materials Testing Microscopy, Atomic Force Microscopy, Electron, Scanning Microscopy, Electron, Transmission Nanotechnology - instrumentation Nanotechnology - methods Nanotubes - chemistry Nanotubes, Carbon - chemistry Semiconductors sensors switches Temperature |
title | A Liquid-Ga-Filled Carbon Nanotube: A Miniaturized Temperature Sensor and Electrical Switch |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A46%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Liquid-Ga-Filled%20Carbon%20Nanotube:%20A%20Miniaturized%20Temperature%20Sensor%20and%20Electrical%20Switch&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Dorozhkin,%20Pavel%E2%80%85S.&rft.date=2005-11&rft.volume=1&rft.issue=11&rft.spage=1088&rft.epage=1093&rft.pages=1088-1093&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.200500154&rft_dat=%3Cproquest_cross%3E70180997%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70180997&rft_id=info:pmid/17193401&rfr_iscdi=true |