A Liquid-Ga-Filled Carbon Nanotube: A Miniaturized Temperature Sensor and Electrical Switch

Temperature control on the nanometer scale is a challenging task in many physical, chemical, and material science applications where small experimental volumes with high temperature gradients are used. The crucial difficulty is reducing the size of temperature sensors while keeping their sensitivity...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2005-11, Vol.1 (11), p.1088-1093
Hauptverfasser: Dorozhkin, Pavel S., Tovstonog, Sergey V., Golberg, Dmitri, Zhan, Jinhua, Ishikawa, Yiji, Shiozawa, Masahiro, Nakanishi, Haruyuki, Nakata, Keiichi, Bando, Yoshio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1093
container_issue 11
container_start_page 1088
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 1
creator Dorozhkin, Pavel S.
Tovstonog, Sergey V.
Golberg, Dmitri
Zhan, Jinhua
Ishikawa, Yiji
Shiozawa, Masahiro
Nakanishi, Haruyuki
Nakata, Keiichi
Bando, Yoshio
description Temperature control on the nanometer scale is a challenging task in many physical, chemical, and material science applications where small experimental volumes with high temperature gradients are used. The crucial difficulty is reducing the size of temperature sensors while keeping their sensitivity, working temperature range, and, most importantly, their simplicity and accuracy of temperature reading. In this work, we demonstrate the ultimate miniaturization of the classic thermometer using an expanding column of liquid gallium inside a multi‐walled C nanotube for precise temperature measurements. We report that electrical conductivity through unfilled nanotube regions is diffusive with a resistance per unit length of ≈10 kΩ μm−1, whereas Ga‐filled segments of the nanotube show metallic behavior with a low resistance of ≈100 Ω μm−1. No noticeable Schottky barrier exists between the nanotube carbon shell and the inner Ga filling. Based on these findings, an individual carbon nanotube partially filled with liquid Ga is used as a temperature sensor and/or switch. The nanotube’s electrical resistance decreases linearly with increasing temperature as the metallic Ga column expands inside the tube channel. In addition, the tube resistance drops sharply when two encapsulated Ga columns approaching each other meet inside the nanotube, producing a switching action that can occur at any predetermined temperature, as the Ga column position inside the nanotube can be effectively pre‐adjusted by nanoindentation using an atomic force microscope. The electrical resistance of individual multi‐walled carbon nanotubes decreases linearly with increasing temperature as a metallic Ga column expands inside the tube channel. Tube resistance also drops sharply when two encapsulated Ga columns, approaching each other, meet inside the nanotube (see Figure), producing a switching action that can occur at any predetermined temperature; the Ga‐column position inside the nanotube can be effectively pre‐adjusted by nanoindentation using an atomic force microscope.
doi_str_mv 10.1002/smll.200500154
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70180997</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70180997</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3334-c75e8c050c79cf7d4703687bd78caaa806490ff7f483420810c8db8ced2910743</originalsourceid><addsrcrecordid>eNqFkL1v2zAQxYmgRZKmWTsWnLrJPYqUSGUzDMcpoDiDE3TIQFDUCWVDSQ4pIR9_fWXYcLt1ujvc7z3gPUK-MJgxgPR7bL2fpQAZAMvECTlnOeNJrtLiw3FncEY-xfgbgLNUyFNyxiQruAB2Th7ntHTPo6uTlUmunfdY04UJVd_Rten6Yazwis7preucGcbg3qf_PbZbDLsT6Qa72AdqupouPdohOGs83by4wf76TD42xke8PMwL8nC9vF_cJOXd6sdiXiaWcy4SKzNUdkpgZWEbWQsJPFeyqqWyxhgFuSigaWQjFBcpTHGsqitlsU4LBlLwC_Jt77sN_fOIcdCtixa9Nx32Y9QSmIKikBM424M29DEGbPQ2uNaEN81A7-rUuzr1sc5J8PXgPFYt1n_xQ38TUOyBF-fx7T92enNblv-aJ3utiwO-HrUmPOlccpnpn-uVBqVYub4BnfE_Bc6PkQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70180997</pqid></control><display><type>article</type><title>A Liquid-Ga-Filled Carbon Nanotube: A Miniaturized Temperature Sensor and Electrical Switch</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Dorozhkin, Pavel S. ; Tovstonog, Sergey V. ; Golberg, Dmitri ; Zhan, Jinhua ; Ishikawa, Yiji ; Shiozawa, Masahiro ; Nakanishi, Haruyuki ; Nakata, Keiichi ; Bando, Yoshio</creator><creatorcontrib>Dorozhkin, Pavel S. ; Tovstonog, Sergey V. ; Golberg, Dmitri ; Zhan, Jinhua ; Ishikawa, Yiji ; Shiozawa, Masahiro ; Nakanishi, Haruyuki ; Nakata, Keiichi ; Bando, Yoshio</creatorcontrib><description>Temperature control on the nanometer scale is a challenging task in many physical, chemical, and material science applications where small experimental volumes with high temperature gradients are used. The crucial difficulty is reducing the size of temperature sensors while keeping their sensitivity, working temperature range, and, most importantly, their simplicity and accuracy of temperature reading. In this work, we demonstrate the ultimate miniaturization of the classic thermometer using an expanding column of liquid gallium inside a multi‐walled C nanotube for precise temperature measurements. We report that electrical conductivity through unfilled nanotube regions is diffusive with a resistance per unit length of ≈10 kΩ μm−1, whereas Ga‐filled segments of the nanotube show metallic behavior with a low resistance of ≈100 Ω μm−1. No noticeable Schottky barrier exists between the nanotube carbon shell and the inner Ga filling. Based on these findings, an individual carbon nanotube partially filled with liquid Ga is used as a temperature sensor and/or switch. The nanotube’s electrical resistance decreases linearly with increasing temperature as the metallic Ga column expands inside the tube channel. In addition, the tube resistance drops sharply when two encapsulated Ga columns approaching each other meet inside the nanotube, producing a switching action that can occur at any predetermined temperature, as the Ga column position inside the nanotube can be effectively pre‐adjusted by nanoindentation using an atomic force microscope. The electrical resistance of individual multi‐walled carbon nanotubes decreases linearly with increasing temperature as a metallic Ga column expands inside the tube channel. Tube resistance also drops sharply when two encapsulated Ga columns, approaching each other, meet inside the nanotube (see Figure), producing a switching action that can occur at any predetermined temperature; the Ga‐column position inside the nanotube can be effectively pre‐adjusted by nanoindentation using an atomic force microscope.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.200500154</identifier><identifier>PMID: 17193401</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Biosensing Techniques ; carbon nanotubes ; Diffusion ; Electric Conductivity ; electrical resistance ; Electrochemistry - methods ; force microscopy ; Gallium - chemistry ; Materials Testing ; Microscopy, Atomic Force ; Microscopy, Electron, Scanning ; Microscopy, Electron, Transmission ; Nanotechnology - instrumentation ; Nanotechnology - methods ; Nanotubes - chemistry ; Nanotubes, Carbon - chemistry ; Semiconductors ; sensors ; switches ; Temperature</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2005-11, Vol.1 (11), p.1088-1093</ispartof><rights>Copyright © 2005 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3334-c75e8c050c79cf7d4703687bd78caaa806490ff7f483420810c8db8ced2910743</citedby><cites>FETCH-LOGICAL-c3334-c75e8c050c79cf7d4703687bd78caaa806490ff7f483420810c8db8ced2910743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.200500154$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.200500154$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17193401$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dorozhkin, Pavel S.</creatorcontrib><creatorcontrib>Tovstonog, Sergey V.</creatorcontrib><creatorcontrib>Golberg, Dmitri</creatorcontrib><creatorcontrib>Zhan, Jinhua</creatorcontrib><creatorcontrib>Ishikawa, Yiji</creatorcontrib><creatorcontrib>Shiozawa, Masahiro</creatorcontrib><creatorcontrib>Nakanishi, Haruyuki</creatorcontrib><creatorcontrib>Nakata, Keiichi</creatorcontrib><creatorcontrib>Bando, Yoshio</creatorcontrib><title>A Liquid-Ga-Filled Carbon Nanotube: A Miniaturized Temperature Sensor and Electrical Switch</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Temperature control on the nanometer scale is a challenging task in many physical, chemical, and material science applications where small experimental volumes with high temperature gradients are used. The crucial difficulty is reducing the size of temperature sensors while keeping their sensitivity, working temperature range, and, most importantly, their simplicity and accuracy of temperature reading. In this work, we demonstrate the ultimate miniaturization of the classic thermometer using an expanding column of liquid gallium inside a multi‐walled C nanotube for precise temperature measurements. We report that electrical conductivity through unfilled nanotube regions is diffusive with a resistance per unit length of ≈10 kΩ μm−1, whereas Ga‐filled segments of the nanotube show metallic behavior with a low resistance of ≈100 Ω μm−1. No noticeable Schottky barrier exists between the nanotube carbon shell and the inner Ga filling. Based on these findings, an individual carbon nanotube partially filled with liquid Ga is used as a temperature sensor and/or switch. The nanotube’s electrical resistance decreases linearly with increasing temperature as the metallic Ga column expands inside the tube channel. In addition, the tube resistance drops sharply when two encapsulated Ga columns approaching each other meet inside the nanotube, producing a switching action that can occur at any predetermined temperature, as the Ga column position inside the nanotube can be effectively pre‐adjusted by nanoindentation using an atomic force microscope. The electrical resistance of individual multi‐walled carbon nanotubes decreases linearly with increasing temperature as a metallic Ga column expands inside the tube channel. Tube resistance also drops sharply when two encapsulated Ga columns, approaching each other, meet inside the nanotube (see Figure), producing a switching action that can occur at any predetermined temperature; the Ga‐column position inside the nanotube can be effectively pre‐adjusted by nanoindentation using an atomic force microscope.</description><subject>Biosensing Techniques</subject><subject>carbon nanotubes</subject><subject>Diffusion</subject><subject>Electric Conductivity</subject><subject>electrical resistance</subject><subject>Electrochemistry - methods</subject><subject>force microscopy</subject><subject>Gallium - chemistry</subject><subject>Materials Testing</subject><subject>Microscopy, Atomic Force</subject><subject>Microscopy, Electron, Scanning</subject><subject>Microscopy, Electron, Transmission</subject><subject>Nanotechnology - instrumentation</subject><subject>Nanotechnology - methods</subject><subject>Nanotubes - chemistry</subject><subject>Nanotubes, Carbon - chemistry</subject><subject>Semiconductors</subject><subject>sensors</subject><subject>switches</subject><subject>Temperature</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkL1v2zAQxYmgRZKmWTsWnLrJPYqUSGUzDMcpoDiDE3TIQFDUCWVDSQ4pIR9_fWXYcLt1ujvc7z3gPUK-MJgxgPR7bL2fpQAZAMvECTlnOeNJrtLiw3FncEY-xfgbgLNUyFNyxiQruAB2Th7ntHTPo6uTlUmunfdY04UJVd_Rten6Yazwis7preucGcbg3qf_PbZbDLsT6Qa72AdqupouPdohOGs83by4wf76TD42xke8PMwL8nC9vF_cJOXd6sdiXiaWcy4SKzNUdkpgZWEbWQsJPFeyqqWyxhgFuSigaWQjFBcpTHGsqitlsU4LBlLwC_Jt77sN_fOIcdCtixa9Nx32Y9QSmIKikBM424M29DEGbPQ2uNaEN81A7-rUuzr1sc5J8PXgPFYt1n_xQ38TUOyBF-fx7T92enNblv-aJ3utiwO-HrUmPOlccpnpn-uVBqVYub4BnfE_Bc6PkQ</recordid><startdate>200511</startdate><enddate>200511</enddate><creator>Dorozhkin, Pavel S.</creator><creator>Tovstonog, Sergey V.</creator><creator>Golberg, Dmitri</creator><creator>Zhan, Jinhua</creator><creator>Ishikawa, Yiji</creator><creator>Shiozawa, Masahiro</creator><creator>Nakanishi, Haruyuki</creator><creator>Nakata, Keiichi</creator><creator>Bando, Yoshio</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>200511</creationdate><title>A Liquid-Ga-Filled Carbon Nanotube: A Miniaturized Temperature Sensor and Electrical Switch</title><author>Dorozhkin, Pavel S. ; Tovstonog, Sergey V. ; Golberg, Dmitri ; Zhan, Jinhua ; Ishikawa, Yiji ; Shiozawa, Masahiro ; Nakanishi, Haruyuki ; Nakata, Keiichi ; Bando, Yoshio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3334-c75e8c050c79cf7d4703687bd78caaa806490ff7f483420810c8db8ced2910743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Biosensing Techniques</topic><topic>carbon nanotubes</topic><topic>Diffusion</topic><topic>Electric Conductivity</topic><topic>electrical resistance</topic><topic>Electrochemistry - methods</topic><topic>force microscopy</topic><topic>Gallium - chemistry</topic><topic>Materials Testing</topic><topic>Microscopy, Atomic Force</topic><topic>Microscopy, Electron, Scanning</topic><topic>Microscopy, Electron, Transmission</topic><topic>Nanotechnology - instrumentation</topic><topic>Nanotechnology - methods</topic><topic>Nanotubes - chemistry</topic><topic>Nanotubes, Carbon - chemistry</topic><topic>Semiconductors</topic><topic>sensors</topic><topic>switches</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dorozhkin, Pavel S.</creatorcontrib><creatorcontrib>Tovstonog, Sergey V.</creatorcontrib><creatorcontrib>Golberg, Dmitri</creatorcontrib><creatorcontrib>Zhan, Jinhua</creatorcontrib><creatorcontrib>Ishikawa, Yiji</creatorcontrib><creatorcontrib>Shiozawa, Masahiro</creatorcontrib><creatorcontrib>Nakanishi, Haruyuki</creatorcontrib><creatorcontrib>Nakata, Keiichi</creatorcontrib><creatorcontrib>Bando, Yoshio</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dorozhkin, Pavel S.</au><au>Tovstonog, Sergey V.</au><au>Golberg, Dmitri</au><au>Zhan, Jinhua</au><au>Ishikawa, Yiji</au><au>Shiozawa, Masahiro</au><au>Nakanishi, Haruyuki</au><au>Nakata, Keiichi</au><au>Bando, Yoshio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Liquid-Ga-Filled Carbon Nanotube: A Miniaturized Temperature Sensor and Electrical Switch</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2005-11</date><risdate>2005</risdate><volume>1</volume><issue>11</issue><spage>1088</spage><epage>1093</epage><pages>1088-1093</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Temperature control on the nanometer scale is a challenging task in many physical, chemical, and material science applications where small experimental volumes with high temperature gradients are used. The crucial difficulty is reducing the size of temperature sensors while keeping their sensitivity, working temperature range, and, most importantly, their simplicity and accuracy of temperature reading. In this work, we demonstrate the ultimate miniaturization of the classic thermometer using an expanding column of liquid gallium inside a multi‐walled C nanotube for precise temperature measurements. We report that electrical conductivity through unfilled nanotube regions is diffusive with a resistance per unit length of ≈10 kΩ μm−1, whereas Ga‐filled segments of the nanotube show metallic behavior with a low resistance of ≈100 Ω μm−1. No noticeable Schottky barrier exists between the nanotube carbon shell and the inner Ga filling. Based on these findings, an individual carbon nanotube partially filled with liquid Ga is used as a temperature sensor and/or switch. The nanotube’s electrical resistance decreases linearly with increasing temperature as the metallic Ga column expands inside the tube channel. In addition, the tube resistance drops sharply when two encapsulated Ga columns approaching each other meet inside the nanotube, producing a switching action that can occur at any predetermined temperature, as the Ga column position inside the nanotube can be effectively pre‐adjusted by nanoindentation using an atomic force microscope. The electrical resistance of individual multi‐walled carbon nanotubes decreases linearly with increasing temperature as a metallic Ga column expands inside the tube channel. Tube resistance also drops sharply when two encapsulated Ga columns, approaching each other, meet inside the nanotube (see Figure), producing a switching action that can occur at any predetermined temperature; the Ga‐column position inside the nanotube can be effectively pre‐adjusted by nanoindentation using an atomic force microscope.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>17193401</pmid><doi>10.1002/smll.200500154</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2005-11, Vol.1 (11), p.1088-1093
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_70180997
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Biosensing Techniques
carbon nanotubes
Diffusion
Electric Conductivity
electrical resistance
Electrochemistry - methods
force microscopy
Gallium - chemistry
Materials Testing
Microscopy, Atomic Force
Microscopy, Electron, Scanning
Microscopy, Electron, Transmission
Nanotechnology - instrumentation
Nanotechnology - methods
Nanotubes - chemistry
Nanotubes, Carbon - chemistry
Semiconductors
sensors
switches
Temperature
title A Liquid-Ga-Filled Carbon Nanotube: A Miniaturized Temperature Sensor and Electrical Switch
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A46%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Liquid-Ga-Filled%20Carbon%20Nanotube:%20A%20Miniaturized%20Temperature%20Sensor%20and%20Electrical%20Switch&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Dorozhkin,%20Pavel%E2%80%85S.&rft.date=2005-11&rft.volume=1&rft.issue=11&rft.spage=1088&rft.epage=1093&rft.pages=1088-1093&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.200500154&rft_dat=%3Cproquest_cross%3E70180997%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70180997&rft_id=info:pmid/17193401&rfr_iscdi=true