Regulation of normal cell cycle progression by flavin-containing oxidases

Mechanisms underlying the role of reactive oxygen species (ROS) generated by flavin-containing oxidases in regulating cell cycle progression were examined in human and rodent fibroblasts. Incubation of confluent cell cultures with nontoxic/nonclastogenic concentrations of the flavoprotein inhibitor,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Oncogene 2008-01, Vol.27 (1), p.20-31
Hauptverfasser: Venkatachalam, P, de Toledo, S M, Pandey, B N, Tephly, L A, Carter, A B, Little, J B, Spitz, D R, Azzam, E I
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 31
container_issue 1
container_start_page 20
container_title Oncogene
container_volume 27
creator Venkatachalam, P
de Toledo, S M
Pandey, B N
Tephly, L A
Carter, A B
Little, J B
Spitz, D R
Azzam, E I
description Mechanisms underlying the role of reactive oxygen species (ROS) generated by flavin-containing oxidases in regulating cell cycle progression were examined in human and rodent fibroblasts. Incubation of confluent cell cultures with nontoxic/nonclastogenic concentrations of the flavoprotein inhibitor, diphenyleneiodonium (DPI), reduced nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase activity and basal ROS levels, but increased proteolysis of cyclin D1, p21 Waf1 and phospho-p38 MAPK . When these cells were allowed to proliferate by subculture in DPI-free medium, an extensive G 1 delay was observed with concomitant activation of p53/p21 Waf1 signaling and reduced phosphorylation of mitogen-activated kinases. Compensation for decreased oxidant generation by simultaneous exposure to DPI and nontoxic doses of the ROS generators, γ -radiation or t -butyl-hydroperoxide, attenuated the G 1 delay. Whereas the DPI-induced G 1 checkpoint was completely dependent on PHOX91 , ATM and WAF1 , it was only partially dependent on P53 . Interestingly, G 1 to S progression was not affected when another flavin-containing enzyme, nitric oxide synthase, was inhibited nor was it associated with changes in mitochondrial membrane potential. Proliferating cells treated with DPI also experienced a significant but attenuated delay in G 2 . We propose that ATM performs a critical function in mediating normal cellular proliferation that is regulated by nonphagocytic NAD(P)H oxidase enzymes activity, which may serve as a novel target for arresting cancer cells in G 1 .
doi_str_mv 10.1038/sj.onc.1210634
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_70178198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A190749579</galeid><sourcerecordid>A190749579</sourcerecordid><originalsourceid>FETCH-LOGICAL-c559t-2f32f746a76eca9e5939cf587ddddb4602696b0f00d0b4004e24bccc6b3b18db3</originalsourceid><addsrcrecordid>eNqFkt9r3SAUx2VsrLfdXvc4wkb3ltvjj2h8LGU_CoXB2J7FGA1eEu00Gbv__Qw3rDA6quAB_Zyv36MHoTcY9hhoe5UP-xjMHhMMnLJnaIeZ4HXTSPYc7UA2UEtCyRk6z_kAAEICeYnOsOBUiIbv0O03Oyyjnn0MVXRViGnSY2XsWJajGW11n-KQbM4r0B0rN-pfPtQmhln74MNQxd--19nmV-iF02O2r7d4gX58-vj95kt99_Xz7c31XW2Kq7kmjhInGNeCW6OlbSSVxjWt6MvoGAfCJe_AAfTQMQBmCeuMMbyjHW77jl6gDyfd4uznYvOsJp9XwzrYuGQlAIsWy_ZJkGAKUgJ7GgROQBJZwHf_gIe4pFCqVYQIymVDoEDvT9CgR6t8cHFO2qyK6hpLEEw2YpXaP0KV2dvJl9e1zpf9xxJMijkn69R98pNOR4VBra2g8kGVVlBbK5SEt5vZpZts_4Bvf1-Ayw3Q2ejRJR2Mz385AtASLprCXZ24XI7CYNND1f-5-g8sfMqY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>227369520</pqid></control><display><type>article</type><title>Regulation of normal cell cycle progression by flavin-containing oxidases</title><source>MEDLINE</source><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Venkatachalam, P ; de Toledo, S M ; Pandey, B N ; Tephly, L A ; Carter, A B ; Little, J B ; Spitz, D R ; Azzam, E I</creator><creatorcontrib>Venkatachalam, P ; de Toledo, S M ; Pandey, B N ; Tephly, L A ; Carter, A B ; Little, J B ; Spitz, D R ; Azzam, E I</creatorcontrib><description>Mechanisms underlying the role of reactive oxygen species (ROS) generated by flavin-containing oxidases in regulating cell cycle progression were examined in human and rodent fibroblasts. Incubation of confluent cell cultures with nontoxic/nonclastogenic concentrations of the flavoprotein inhibitor, diphenyleneiodonium (DPI), reduced nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase activity and basal ROS levels, but increased proteolysis of cyclin D1, p21 Waf1 and phospho-p38 MAPK . When these cells were allowed to proliferate by subculture in DPI-free medium, an extensive G 1 delay was observed with concomitant activation of p53/p21 Waf1 signaling and reduced phosphorylation of mitogen-activated kinases. Compensation for decreased oxidant generation by simultaneous exposure to DPI and nontoxic doses of the ROS generators, γ -radiation or t -butyl-hydroperoxide, attenuated the G 1 delay. Whereas the DPI-induced G 1 checkpoint was completely dependent on PHOX91 , ATM and WAF1 , it was only partially dependent on P53 . Interestingly, G 1 to S progression was not affected when another flavin-containing enzyme, nitric oxide synthase, was inhibited nor was it associated with changes in mitochondrial membrane potential. Proliferating cells treated with DPI also experienced a significant but attenuated delay in G 2 . We propose that ATM performs a critical function in mediating normal cellular proliferation that is regulated by nonphagocytic NAD(P)H oxidase enzymes activity, which may serve as a novel target for arresting cancer cells in G 1 .</description><identifier>ISSN: 0950-9232</identifier><identifier>EISSN: 1476-5594</identifier><identifier>DOI: 10.1038/sj.onc.1210634</identifier><identifier>PMID: 17637756</identifier><identifier>CODEN: ONCNES</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Active oxygen ; Animals ; Apoptosis ; Biochemistry ; Biological and medical sciences ; Cancer ; Cell Biology ; Cell culture ; Cell cycle ; Cell Cycle - drug effects ; Cell Cycle - physiology ; Cell cycle, cell proliferation ; Cell Line ; Cell physiology ; Cell Survival - drug effects ; Cell Survival - physiology ; Cell transformation and carcinogenesis. Action of oncogenes and antioncogenes ; Cells, Cultured ; Fibroblasts - cytology ; Fibroblasts - drug effects ; Fibroblasts - enzymology ; Flavins - metabolism ; Flavins - physiology ; Fundamental and applied biological sciences. Psychology ; Genetic aspects ; Genetics ; Growth Inhibitors - pharmacology ; Human Genetics ; Humans ; Internal Medicine ; Medicine ; Medicine &amp; Public Health ; Membrane Potentials - drug effects ; Membrane Potentials - physiology ; Mice ; Mice, Inbred C3H ; Mitochondrial Proteins - metabolism ; Mitochondrial Proteins - physiology ; Molecular and cellular biology ; NADPH Oxidases - antagonists &amp; inhibitors ; NADPH Oxidases - metabolism ; NADPH Oxidases - physiology ; Oncology ; Onium Compounds - pharmacology ; original-article ; Oxidases ; Oxidation-Reduction ; Physiological aspects ; Signal transduction ; Signal Transduction - drug effects ; Signal Transduction - physiology</subject><ispartof>Oncogene, 2008-01, Vol.27 (1), p.20-31</ispartof><rights>Springer Nature Limited 2008</rights><rights>2008 INIST-CNRS</rights><rights>COPYRIGHT 2008 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jan 3, 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c559t-2f32f746a76eca9e5939cf587ddddb4602696b0f00d0b4004e24bccc6b3b18db3</citedby><cites>FETCH-LOGICAL-c559t-2f32f746a76eca9e5939cf587ddddb4602696b0f00d0b4004e24bccc6b3b18db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/sj.onc.1210634$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/sj.onc.1210634$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20082675$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17637756$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Venkatachalam, P</creatorcontrib><creatorcontrib>de Toledo, S M</creatorcontrib><creatorcontrib>Pandey, B N</creatorcontrib><creatorcontrib>Tephly, L A</creatorcontrib><creatorcontrib>Carter, A B</creatorcontrib><creatorcontrib>Little, J B</creatorcontrib><creatorcontrib>Spitz, D R</creatorcontrib><creatorcontrib>Azzam, E I</creatorcontrib><title>Regulation of normal cell cycle progression by flavin-containing oxidases</title><title>Oncogene</title><addtitle>Oncogene</addtitle><addtitle>Oncogene</addtitle><description>Mechanisms underlying the role of reactive oxygen species (ROS) generated by flavin-containing oxidases in regulating cell cycle progression were examined in human and rodent fibroblasts. Incubation of confluent cell cultures with nontoxic/nonclastogenic concentrations of the flavoprotein inhibitor, diphenyleneiodonium (DPI), reduced nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase activity and basal ROS levels, but increased proteolysis of cyclin D1, p21 Waf1 and phospho-p38 MAPK . When these cells were allowed to proliferate by subculture in DPI-free medium, an extensive G 1 delay was observed with concomitant activation of p53/p21 Waf1 signaling and reduced phosphorylation of mitogen-activated kinases. Compensation for decreased oxidant generation by simultaneous exposure to DPI and nontoxic doses of the ROS generators, γ -radiation or t -butyl-hydroperoxide, attenuated the G 1 delay. Whereas the DPI-induced G 1 checkpoint was completely dependent on PHOX91 , ATM and WAF1 , it was only partially dependent on P53 . Interestingly, G 1 to S progression was not affected when another flavin-containing enzyme, nitric oxide synthase, was inhibited nor was it associated with changes in mitochondrial membrane potential. Proliferating cells treated with DPI also experienced a significant but attenuated delay in G 2 . We propose that ATM performs a critical function in mediating normal cellular proliferation that is regulated by nonphagocytic NAD(P)H oxidase enzymes activity, which may serve as a novel target for arresting cancer cells in G 1 .</description><subject>Active oxygen</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>Cancer</subject><subject>Cell Biology</subject><subject>Cell culture</subject><subject>Cell cycle</subject><subject>Cell Cycle - drug effects</subject><subject>Cell Cycle - physiology</subject><subject>Cell cycle, cell proliferation</subject><subject>Cell Line</subject><subject>Cell physiology</subject><subject>Cell Survival - drug effects</subject><subject>Cell Survival - physiology</subject><subject>Cell transformation and carcinogenesis. Action of oncogenes and antioncogenes</subject><subject>Cells, Cultured</subject><subject>Fibroblasts - cytology</subject><subject>Fibroblasts - drug effects</subject><subject>Fibroblasts - enzymology</subject><subject>Flavins - metabolism</subject><subject>Flavins - physiology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetic aspects</subject><subject>Genetics</subject><subject>Growth Inhibitors - pharmacology</subject><subject>Human Genetics</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Membrane Potentials - drug effects</subject><subject>Membrane Potentials - physiology</subject><subject>Mice</subject><subject>Mice, Inbred C3H</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>Mitochondrial Proteins - physiology</subject><subject>Molecular and cellular biology</subject><subject>NADPH Oxidases - antagonists &amp; inhibitors</subject><subject>NADPH Oxidases - metabolism</subject><subject>NADPH Oxidases - physiology</subject><subject>Oncology</subject><subject>Onium Compounds - pharmacology</subject><subject>original-article</subject><subject>Oxidases</subject><subject>Oxidation-Reduction</subject><subject>Physiological aspects</subject><subject>Signal transduction</subject><subject>Signal Transduction - drug effects</subject><subject>Signal Transduction - physiology</subject><issn>0950-9232</issn><issn>1476-5594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkt9r3SAUx2VsrLfdXvc4wkb3ltvjj2h8LGU_CoXB2J7FGA1eEu00Gbv__Qw3rDA6quAB_Zyv36MHoTcY9hhoe5UP-xjMHhMMnLJnaIeZ4HXTSPYc7UA2UEtCyRk6z_kAAEICeYnOsOBUiIbv0O03Oyyjnn0MVXRViGnSY2XsWJajGW11n-KQbM4r0B0rN-pfPtQmhln74MNQxd--19nmV-iF02O2r7d4gX58-vj95kt99_Xz7c31XW2Kq7kmjhInGNeCW6OlbSSVxjWt6MvoGAfCJe_AAfTQMQBmCeuMMbyjHW77jl6gDyfd4uznYvOsJp9XwzrYuGQlAIsWy_ZJkGAKUgJ7GgROQBJZwHf_gIe4pFCqVYQIymVDoEDvT9CgR6t8cHFO2qyK6hpLEEw2YpXaP0KV2dvJl9e1zpf9xxJMijkn69R98pNOR4VBra2g8kGVVlBbK5SEt5vZpZts_4Bvf1-Ayw3Q2ejRJR2Mz385AtASLprCXZ24XI7CYNND1f-5-g8sfMqY</recordid><startdate>20080103</startdate><enddate>20080103</enddate><creator>Venkatachalam, P</creator><creator>de Toledo, S M</creator><creator>Pandey, B N</creator><creator>Tephly, L A</creator><creator>Carter, A B</creator><creator>Little, J B</creator><creator>Spitz, D R</creator><creator>Azzam, E I</creator><general>Nature Publishing Group UK</general><general>Nature Publishing</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20080103</creationdate><title>Regulation of normal cell cycle progression by flavin-containing oxidases</title><author>Venkatachalam, P ; de Toledo, S M ; Pandey, B N ; Tephly, L A ; Carter, A B ; Little, J B ; Spitz, D R ; Azzam, E I</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c559t-2f32f746a76eca9e5939cf587ddddb4602696b0f00d0b4004e24bccc6b3b18db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Active oxygen</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>Cancer</topic><topic>Cell Biology</topic><topic>Cell culture</topic><topic>Cell cycle</topic><topic>Cell Cycle - drug effects</topic><topic>Cell Cycle - physiology</topic><topic>Cell cycle, cell proliferation</topic><topic>Cell Line</topic><topic>Cell physiology</topic><topic>Cell Survival - drug effects</topic><topic>Cell Survival - physiology</topic><topic>Cell transformation and carcinogenesis. Action of oncogenes and antioncogenes</topic><topic>Cells, Cultured</topic><topic>Fibroblasts - cytology</topic><topic>Fibroblasts - drug effects</topic><topic>Fibroblasts - enzymology</topic><topic>Flavins - metabolism</topic><topic>Flavins - physiology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetic aspects</topic><topic>Genetics</topic><topic>Growth Inhibitors - pharmacology</topic><topic>Human Genetics</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Membrane Potentials - drug effects</topic><topic>Membrane Potentials - physiology</topic><topic>Mice</topic><topic>Mice, Inbred C3H</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>Mitochondrial Proteins - physiology</topic><topic>Molecular and cellular biology</topic><topic>NADPH Oxidases - antagonists &amp; inhibitors</topic><topic>NADPH Oxidases - metabolism</topic><topic>NADPH Oxidases - physiology</topic><topic>Oncology</topic><topic>Onium Compounds - pharmacology</topic><topic>original-article</topic><topic>Oxidases</topic><topic>Oxidation-Reduction</topic><topic>Physiological aspects</topic><topic>Signal transduction</topic><topic>Signal Transduction - drug effects</topic><topic>Signal Transduction - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Venkatachalam, P</creatorcontrib><creatorcontrib>de Toledo, S M</creatorcontrib><creatorcontrib>Pandey, B N</creatorcontrib><creatorcontrib>Tephly, L A</creatorcontrib><creatorcontrib>Carter, A B</creatorcontrib><creatorcontrib>Little, J B</creatorcontrib><creatorcontrib>Spitz, D R</creatorcontrib><creatorcontrib>Azzam, E I</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Oncogene</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Venkatachalam, P</au><au>de Toledo, S M</au><au>Pandey, B N</au><au>Tephly, L A</au><au>Carter, A B</au><au>Little, J B</au><au>Spitz, D R</au><au>Azzam, E I</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation of normal cell cycle progression by flavin-containing oxidases</atitle><jtitle>Oncogene</jtitle><stitle>Oncogene</stitle><addtitle>Oncogene</addtitle><date>2008-01-03</date><risdate>2008</risdate><volume>27</volume><issue>1</issue><spage>20</spage><epage>31</epage><pages>20-31</pages><issn>0950-9232</issn><eissn>1476-5594</eissn><coden>ONCNES</coden><abstract>Mechanisms underlying the role of reactive oxygen species (ROS) generated by flavin-containing oxidases in regulating cell cycle progression were examined in human and rodent fibroblasts. Incubation of confluent cell cultures with nontoxic/nonclastogenic concentrations of the flavoprotein inhibitor, diphenyleneiodonium (DPI), reduced nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase activity and basal ROS levels, but increased proteolysis of cyclin D1, p21 Waf1 and phospho-p38 MAPK . When these cells were allowed to proliferate by subculture in DPI-free medium, an extensive G 1 delay was observed with concomitant activation of p53/p21 Waf1 signaling and reduced phosphorylation of mitogen-activated kinases. Compensation for decreased oxidant generation by simultaneous exposure to DPI and nontoxic doses of the ROS generators, γ -radiation or t -butyl-hydroperoxide, attenuated the G 1 delay. Whereas the DPI-induced G 1 checkpoint was completely dependent on PHOX91 , ATM and WAF1 , it was only partially dependent on P53 . Interestingly, G 1 to S progression was not affected when another flavin-containing enzyme, nitric oxide synthase, was inhibited nor was it associated with changes in mitochondrial membrane potential. Proliferating cells treated with DPI also experienced a significant but attenuated delay in G 2 . We propose that ATM performs a critical function in mediating normal cellular proliferation that is regulated by nonphagocytic NAD(P)H oxidase enzymes activity, which may serve as a novel target for arresting cancer cells in G 1 .</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>17637756</pmid><doi>10.1038/sj.onc.1210634</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-9232
ispartof Oncogene, 2008-01, Vol.27 (1), p.20-31
issn 0950-9232
1476-5594
language eng
recordid cdi_proquest_miscellaneous_70178198
source MEDLINE; Springer Nature - Complete Springer Journals; Nature Journals Online; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Active oxygen
Animals
Apoptosis
Biochemistry
Biological and medical sciences
Cancer
Cell Biology
Cell culture
Cell cycle
Cell Cycle - drug effects
Cell Cycle - physiology
Cell cycle, cell proliferation
Cell Line
Cell physiology
Cell Survival - drug effects
Cell Survival - physiology
Cell transformation and carcinogenesis. Action of oncogenes and antioncogenes
Cells, Cultured
Fibroblasts - cytology
Fibroblasts - drug effects
Fibroblasts - enzymology
Flavins - metabolism
Flavins - physiology
Fundamental and applied biological sciences. Psychology
Genetic aspects
Genetics
Growth Inhibitors - pharmacology
Human Genetics
Humans
Internal Medicine
Medicine
Medicine & Public Health
Membrane Potentials - drug effects
Membrane Potentials - physiology
Mice
Mice, Inbred C3H
Mitochondrial Proteins - metabolism
Mitochondrial Proteins - physiology
Molecular and cellular biology
NADPH Oxidases - antagonists & inhibitors
NADPH Oxidases - metabolism
NADPH Oxidases - physiology
Oncology
Onium Compounds - pharmacology
original-article
Oxidases
Oxidation-Reduction
Physiological aspects
Signal transduction
Signal Transduction - drug effects
Signal Transduction - physiology
title Regulation of normal cell cycle progression by flavin-containing oxidases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T06%3A58%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20of%20normal%20cell%20cycle%20progression%20by%20flavin-containing%20oxidases&rft.jtitle=Oncogene&rft.au=Venkatachalam,%20P&rft.date=2008-01-03&rft.volume=27&rft.issue=1&rft.spage=20&rft.epage=31&rft.pages=20-31&rft.issn=0950-9232&rft.eissn=1476-5594&rft.coden=ONCNES&rft_id=info:doi/10.1038/sj.onc.1210634&rft_dat=%3Cgale_proqu%3EA190749579%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=227369520&rft_id=info:pmid/17637756&rft_galeid=A190749579&rfr_iscdi=true