Structure and Properties Relationships for Aromatic Polyimides and Their Derived Carbon Membranes: Experimental and Simulation Approaches
The main objective of this study is to investigate the factors of the chemical structure and physical properties of rigid polyimides in determining the performance of derived carbon membranes through both the experimental and simulation methods. Four polyimides made of different dianhydrides were py...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. B 2005-10, Vol.109 (40), p.18741-18748 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The main objective of this study is to investigate the factors of the chemical structure and physical properties of rigid polyimides in determining the performance of derived carbon membranes through both the experimental and simulation methods. Four polyimides made of different dianhydrides were pyrolyzed at 550 and 800 °C under vacuum conditions. The resultant carbon membranes exhibit excellent gas separation performances beyond the traditional upper limit line for polymer membranes. The thermal stability and the fractional free volume (FFV) of polyimides were examined by a thermogravimetric analyzer and a density meter. The chain properties of polyimide, such as flatness, chain linearity, and mobility, were simulated using the Cerius2 software. All above characterizations of polyimides were related to the microstructure and gas transport properties of the resultant carbon membranes. It was observed that the high FFV values and low thermal stability of polyimide produce carbon membranes with bigger pore and higher gas permeability at low pyrolysis temperatures. Therefore, polyimides with big thermally labile side groups should be preferred to prepare carbon membranes at low pyrolysis temperatures for high permeability applications. On the other side, since the flatness and in-plane orientation of precursors may lead carbon membranes to ordered structure, thus obtaining high gas selectivity, linear polyimides with more coplanar aromatic rings should be first choice to prepare carbon membranes at high pyrolysis temperatures for high selectivity applications. The location of the indan group also affects chain flatness and in-plane orientation. As a result, carbon membranes derived from the BTDA-DAI precursor have superior separation performance to those derived from Matrimid. |
---|---|
ISSN: | 1520-6106 1520-5207 |
DOI: | 10.1021/jp050177l |