Hydration Forces Underlie the Exclusion of Salts and of Neutral Polar Solutes from Hydroxypropylcellulose

The distance dependence for the preferential exclusion of several salts and neutral solutes from hydroxypropyl cellulose (HPC) has been measured via the effect of these small molecules on the thermodynamic forces between HPC polymers in ordered arrays. The concentration of salts and neutral solutes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2005-05, Vol.109 (18), p.9111-9118
Hauptverfasser: Chik, John, Mizrahi, Shimon, Chi, Sulene, Parsegian, V. Adrian, Rau, Donald C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9118
container_issue 18
container_start_page 9111
container_title The journal of physical chemistry. B
container_volume 109
creator Chik, John
Mizrahi, Shimon
Chi, Sulene
Parsegian, V. Adrian
Rau, Donald C
description The distance dependence for the preferential exclusion of several salts and neutral solutes from hydroxypropyl cellulose (HPC) has been measured via the effect of these small molecules on the thermodynamic forces between HPC polymers in ordered arrays. The concentration of salts and neutral solutes decreases exponentially as the spacing between apposing nonpolar HPC surfaces decreases. For all solutes, the spatial decay lengths of this exclusion are remarkably similar to those observed between many macromolecules at close spacings where intermolecular forces have been ascribed to the energetics of water structuring. Exclusion magnitudes depend strongly on the nature and size of the particular salt or solute; for the three potassium salts studied, exclusion follows the anionic Hofmeister series. The change in the number of excess waters associated with HPC polymers is independent of solute concentration suggesting that the dominating interactions are between solutes and the hydrated polymer. These findings further confirm the importance of solvation interactions and reveal an unexpected unity of Hofmeister effects, preferential hydration, and hydration forces.
doi_str_mv 10.1021/jp046999k
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70176170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70176170</sourcerecordid><originalsourceid>FETCH-LOGICAL-a351t-43e09b45dd3be26d73c7b9cb7da5d056437d8fb5e6e999f553e00d6155f48d9e3</originalsourceid><addsrcrecordid>eNptkF1LwzAUhoMofl_4ByQ3Cl5Uk7ZJ2kuZmx9MHUxBvAlpc4rdsmYmLWz_3pQNvfEiJIf3yXvOeRE6o-SakpjezJYk5Xmez3fQIWUxicIRu9s3p4QfoCPvZ4TELM74PjqgPAtSlh6i-mGtnWpr2-CRdSV4_N5ocKYG3H4BHq5K0_letRWeKtN6rBrdFy_QtU4ZPLFGOTy1pmvD58rZBe4t7Wq9dHa5NiUY0xnr4QTtVcp4ON3ex-h9NHwbPETj1_vHwe04UgmjbZQmQPIiZVonBcRci6QURV4WQiumCeNpInRWFQw4hI0rxgJPNKeMVWmmc0iO0eXGN_T_7sC3clH7fgrVgO28FIQKTgUJ4NUGLJ313kEll65eKLeWlMg-V_mba2DPt6ZdsQD9R26DDEC0AWrfwupXV24uuUgEk2-Tqbz7-IzTpwmVz4G_2PCq9HJmO9eETP5p_AOWFY_v</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70176170</pqid></control><display><type>article</type><title>Hydration Forces Underlie the Exclusion of Salts and of Neutral Polar Solutes from Hydroxypropylcellulose</title><source>MEDLINE</source><source>ACS Journals: American Chemical Society Web Editions</source><creator>Chik, John ; Mizrahi, Shimon ; Chi, Sulene ; Parsegian, V. Adrian ; Rau, Donald C</creator><creatorcontrib>Chik, John ; Mizrahi, Shimon ; Chi, Sulene ; Parsegian, V. Adrian ; Rau, Donald C</creatorcontrib><description>The distance dependence for the preferential exclusion of several salts and neutral solutes from hydroxypropyl cellulose (HPC) has been measured via the effect of these small molecules on the thermodynamic forces between HPC polymers in ordered arrays. The concentration of salts and neutral solutes decreases exponentially as the spacing between apposing nonpolar HPC surfaces decreases. For all solutes, the spatial decay lengths of this exclusion are remarkably similar to those observed between many macromolecules at close spacings where intermolecular forces have been ascribed to the energetics of water structuring. Exclusion magnitudes depend strongly on the nature and size of the particular salt or solute; for the three potassium salts studied, exclusion follows the anionic Hofmeister series. The change in the number of excess waters associated with HPC polymers is independent of solute concentration suggesting that the dominating interactions are between solutes and the hydrated polymer. These findings further confirm the importance of solvation interactions and reveal an unexpected unity of Hofmeister effects, preferential hydration, and hydration forces.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/jp046999k</identifier><identifier>PMID: 16852084</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Cellulose - analogs &amp; derivatives ; Cellulose - chemistry ; Salts - chemistry ; Scattering, Radiation ; Thermodynamics ; Water - chemistry</subject><ispartof>The journal of physical chemistry. B, 2005-05, Vol.109 (18), p.9111-9118</ispartof><rights>Copyright © 2005 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a351t-43e09b45dd3be26d73c7b9cb7da5d056437d8fb5e6e999f553e00d6155f48d9e3</citedby><cites>FETCH-LOGICAL-a351t-43e09b45dd3be26d73c7b9cb7da5d056437d8fb5e6e999f553e00d6155f48d9e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp046999k$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp046999k$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16852084$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chik, John</creatorcontrib><creatorcontrib>Mizrahi, Shimon</creatorcontrib><creatorcontrib>Chi, Sulene</creatorcontrib><creatorcontrib>Parsegian, V. Adrian</creatorcontrib><creatorcontrib>Rau, Donald C</creatorcontrib><title>Hydration Forces Underlie the Exclusion of Salts and of Neutral Polar Solutes from Hydroxypropylcellulose</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>The distance dependence for the preferential exclusion of several salts and neutral solutes from hydroxypropyl cellulose (HPC) has been measured via the effect of these small molecules on the thermodynamic forces between HPC polymers in ordered arrays. The concentration of salts and neutral solutes decreases exponentially as the spacing between apposing nonpolar HPC surfaces decreases. For all solutes, the spatial decay lengths of this exclusion are remarkably similar to those observed between many macromolecules at close spacings where intermolecular forces have been ascribed to the energetics of water structuring. Exclusion magnitudes depend strongly on the nature and size of the particular salt or solute; for the three potassium salts studied, exclusion follows the anionic Hofmeister series. The change in the number of excess waters associated with HPC polymers is independent of solute concentration suggesting that the dominating interactions are between solutes and the hydrated polymer. These findings further confirm the importance of solvation interactions and reveal an unexpected unity of Hofmeister effects, preferential hydration, and hydration forces.</description><subject>Cellulose - analogs &amp; derivatives</subject><subject>Cellulose - chemistry</subject><subject>Salts - chemistry</subject><subject>Scattering, Radiation</subject><subject>Thermodynamics</subject><subject>Water - chemistry</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkF1LwzAUhoMofl_4ByQ3Cl5Uk7ZJ2kuZmx9MHUxBvAlpc4rdsmYmLWz_3pQNvfEiJIf3yXvOeRE6o-SakpjezJYk5Xmez3fQIWUxicIRu9s3p4QfoCPvZ4TELM74PjqgPAtSlh6i-mGtnWpr2-CRdSV4_N5ocKYG3H4BHq5K0_letRWeKtN6rBrdFy_QtU4ZPLFGOTy1pmvD58rZBe4t7Wq9dHa5NiUY0xnr4QTtVcp4ON3ex-h9NHwbPETj1_vHwe04UgmjbZQmQPIiZVonBcRci6QURV4WQiumCeNpInRWFQw4hI0rxgJPNKeMVWmmc0iO0eXGN_T_7sC3clH7fgrVgO28FIQKTgUJ4NUGLJ313kEll65eKLeWlMg-V_mba2DPt6ZdsQD9R26DDEC0AWrfwupXV24uuUgEk2-Tqbz7-IzTpwmVz4G_2PCq9HJmO9eETP5p_AOWFY_v</recordid><startdate>20050512</startdate><enddate>20050512</enddate><creator>Chik, John</creator><creator>Mizrahi, Shimon</creator><creator>Chi, Sulene</creator><creator>Parsegian, V. Adrian</creator><creator>Rau, Donald C</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20050512</creationdate><title>Hydration Forces Underlie the Exclusion of Salts and of Neutral Polar Solutes from Hydroxypropylcellulose</title><author>Chik, John ; Mizrahi, Shimon ; Chi, Sulene ; Parsegian, V. Adrian ; Rau, Donald C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a351t-43e09b45dd3be26d73c7b9cb7da5d056437d8fb5e6e999f553e00d6155f48d9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Cellulose - analogs &amp; derivatives</topic><topic>Cellulose - chemistry</topic><topic>Salts - chemistry</topic><topic>Scattering, Radiation</topic><topic>Thermodynamics</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chik, John</creatorcontrib><creatorcontrib>Mizrahi, Shimon</creatorcontrib><creatorcontrib>Chi, Sulene</creatorcontrib><creatorcontrib>Parsegian, V. Adrian</creatorcontrib><creatorcontrib>Rau, Donald C</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chik, John</au><au>Mizrahi, Shimon</au><au>Chi, Sulene</au><au>Parsegian, V. Adrian</au><au>Rau, Donald C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydration Forces Underlie the Exclusion of Salts and of Neutral Polar Solutes from Hydroxypropylcellulose</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2005-05-12</date><risdate>2005</risdate><volume>109</volume><issue>18</issue><spage>9111</spage><epage>9118</epage><pages>9111-9118</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>The distance dependence for the preferential exclusion of several salts and neutral solutes from hydroxypropyl cellulose (HPC) has been measured via the effect of these small molecules on the thermodynamic forces between HPC polymers in ordered arrays. The concentration of salts and neutral solutes decreases exponentially as the spacing between apposing nonpolar HPC surfaces decreases. For all solutes, the spatial decay lengths of this exclusion are remarkably similar to those observed between many macromolecules at close spacings where intermolecular forces have been ascribed to the energetics of water structuring. Exclusion magnitudes depend strongly on the nature and size of the particular salt or solute; for the three potassium salts studied, exclusion follows the anionic Hofmeister series. The change in the number of excess waters associated with HPC polymers is independent of solute concentration suggesting that the dominating interactions are between solutes and the hydrated polymer. These findings further confirm the importance of solvation interactions and reveal an unexpected unity of Hofmeister effects, preferential hydration, and hydration forces.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>16852084</pmid><doi>10.1021/jp046999k</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2005-05, Vol.109 (18), p.9111-9118
issn 1520-6106
1520-5207
language eng
recordid cdi_proquest_miscellaneous_70176170
source MEDLINE; ACS Journals: American Chemical Society Web Editions
subjects Cellulose - analogs & derivatives
Cellulose - chemistry
Salts - chemistry
Scattering, Radiation
Thermodynamics
Water - chemistry
title Hydration Forces Underlie the Exclusion of Salts and of Neutral Polar Solutes from Hydroxypropylcellulose
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-10T18%3A44%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydration%20Forces%20Underlie%20the%20Exclusion%20of%20Salts%20and%20of%20Neutral%20Polar%20Solutes%20from%20Hydroxypropylcellulose&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Chik,%20John&rft.date=2005-05-12&rft.volume=109&rft.issue=18&rft.spage=9111&rft.epage=9118&rft.pages=9111-9118&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/jp046999k&rft_dat=%3Cproquest_cross%3E70176170%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70176170&rft_id=info:pmid/16852084&rfr_iscdi=true