Hydration Forces Underlie the Exclusion of Salts and of Neutral Polar Solutes from Hydroxypropylcellulose
The distance dependence for the preferential exclusion of several salts and neutral solutes from hydroxypropyl cellulose (HPC) has been measured via the effect of these small molecules on the thermodynamic forces between HPC polymers in ordered arrays. The concentration of salts and neutral solutes...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. B 2005-05, Vol.109 (18), p.9111-9118 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9118 |
---|---|
container_issue | 18 |
container_start_page | 9111 |
container_title | The journal of physical chemistry. B |
container_volume | 109 |
creator | Chik, John Mizrahi, Shimon Chi, Sulene Parsegian, V. Adrian Rau, Donald C |
description | The distance dependence for the preferential exclusion of several salts and neutral solutes from hydroxypropyl cellulose (HPC) has been measured via the effect of these small molecules on the thermodynamic forces between HPC polymers in ordered arrays. The concentration of salts and neutral solutes decreases exponentially as the spacing between apposing nonpolar HPC surfaces decreases. For all solutes, the spatial decay lengths of this exclusion are remarkably similar to those observed between many macromolecules at close spacings where intermolecular forces have been ascribed to the energetics of water structuring. Exclusion magnitudes depend strongly on the nature and size of the particular salt or solute; for the three potassium salts studied, exclusion follows the anionic Hofmeister series. The change in the number of excess waters associated with HPC polymers is independent of solute concentration suggesting that the dominating interactions are between solutes and the hydrated polymer. These findings further confirm the importance of solvation interactions and reveal an unexpected unity of Hofmeister effects, preferential hydration, and hydration forces. |
doi_str_mv | 10.1021/jp046999k |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70176170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70176170</sourcerecordid><originalsourceid>FETCH-LOGICAL-a351t-43e09b45dd3be26d73c7b9cb7da5d056437d8fb5e6e999f553e00d6155f48d9e3</originalsourceid><addsrcrecordid>eNptkF1LwzAUhoMofl_4ByQ3Cl5Uk7ZJ2kuZmx9MHUxBvAlpc4rdsmYmLWz_3pQNvfEiJIf3yXvOeRE6o-SakpjezJYk5Xmez3fQIWUxicIRu9s3p4QfoCPvZ4TELM74PjqgPAtSlh6i-mGtnWpr2-CRdSV4_N5ocKYG3H4BHq5K0_letRWeKtN6rBrdFy_QtU4ZPLFGOTy1pmvD58rZBe4t7Wq9dHa5NiUY0xnr4QTtVcp4ON3ex-h9NHwbPETj1_vHwe04UgmjbZQmQPIiZVonBcRci6QURV4WQiumCeNpInRWFQw4hI0rxgJPNKeMVWmmc0iO0eXGN_T_7sC3clH7fgrVgO28FIQKTgUJ4NUGLJ313kEll65eKLeWlMg-V_mba2DPt6ZdsQD9R26DDEC0AWrfwupXV24uuUgEk2-Tqbz7-IzTpwmVz4G_2PCq9HJmO9eETP5p_AOWFY_v</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70176170</pqid></control><display><type>article</type><title>Hydration Forces Underlie the Exclusion of Salts and of Neutral Polar Solutes from Hydroxypropylcellulose</title><source>MEDLINE</source><source>ACS Journals: American Chemical Society Web Editions</source><creator>Chik, John ; Mizrahi, Shimon ; Chi, Sulene ; Parsegian, V. Adrian ; Rau, Donald C</creator><creatorcontrib>Chik, John ; Mizrahi, Shimon ; Chi, Sulene ; Parsegian, V. Adrian ; Rau, Donald C</creatorcontrib><description>The distance dependence for the preferential exclusion of several salts and neutral solutes from hydroxypropyl cellulose (HPC) has been measured via the effect of these small molecules on the thermodynamic forces between HPC polymers in ordered arrays. The concentration of salts and neutral solutes decreases exponentially as the spacing between apposing nonpolar HPC surfaces decreases. For all solutes, the spatial decay lengths of this exclusion are remarkably similar to those observed between many macromolecules at close spacings where intermolecular forces have been ascribed to the energetics of water structuring. Exclusion magnitudes depend strongly on the nature and size of the particular salt or solute; for the three potassium salts studied, exclusion follows the anionic Hofmeister series. The change in the number of excess waters associated with HPC polymers is independent of solute concentration suggesting that the dominating interactions are between solutes and the hydrated polymer. These findings further confirm the importance of solvation interactions and reveal an unexpected unity of Hofmeister effects, preferential hydration, and hydration forces.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/jp046999k</identifier><identifier>PMID: 16852084</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Cellulose - analogs & derivatives ; Cellulose - chemistry ; Salts - chemistry ; Scattering, Radiation ; Thermodynamics ; Water - chemistry</subject><ispartof>The journal of physical chemistry. B, 2005-05, Vol.109 (18), p.9111-9118</ispartof><rights>Copyright © 2005 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a351t-43e09b45dd3be26d73c7b9cb7da5d056437d8fb5e6e999f553e00d6155f48d9e3</citedby><cites>FETCH-LOGICAL-a351t-43e09b45dd3be26d73c7b9cb7da5d056437d8fb5e6e999f553e00d6155f48d9e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp046999k$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp046999k$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16852084$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chik, John</creatorcontrib><creatorcontrib>Mizrahi, Shimon</creatorcontrib><creatorcontrib>Chi, Sulene</creatorcontrib><creatorcontrib>Parsegian, V. Adrian</creatorcontrib><creatorcontrib>Rau, Donald C</creatorcontrib><title>Hydration Forces Underlie the Exclusion of Salts and of Neutral Polar Solutes from Hydroxypropylcellulose</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>The distance dependence for the preferential exclusion of several salts and neutral solutes from hydroxypropyl cellulose (HPC) has been measured via the effect of these small molecules on the thermodynamic forces between HPC polymers in ordered arrays. The concentration of salts and neutral solutes decreases exponentially as the spacing between apposing nonpolar HPC surfaces decreases. For all solutes, the spatial decay lengths of this exclusion are remarkably similar to those observed between many macromolecules at close spacings where intermolecular forces have been ascribed to the energetics of water structuring. Exclusion magnitudes depend strongly on the nature and size of the particular salt or solute; for the three potassium salts studied, exclusion follows the anionic Hofmeister series. The change in the number of excess waters associated with HPC polymers is independent of solute concentration suggesting that the dominating interactions are between solutes and the hydrated polymer. These findings further confirm the importance of solvation interactions and reveal an unexpected unity of Hofmeister effects, preferential hydration, and hydration forces.</description><subject>Cellulose - analogs & derivatives</subject><subject>Cellulose - chemistry</subject><subject>Salts - chemistry</subject><subject>Scattering, Radiation</subject><subject>Thermodynamics</subject><subject>Water - chemistry</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkF1LwzAUhoMofl_4ByQ3Cl5Uk7ZJ2kuZmx9MHUxBvAlpc4rdsmYmLWz_3pQNvfEiJIf3yXvOeRE6o-SakpjezJYk5Xmez3fQIWUxicIRu9s3p4QfoCPvZ4TELM74PjqgPAtSlh6i-mGtnWpr2-CRdSV4_N5ocKYG3H4BHq5K0_letRWeKtN6rBrdFy_QtU4ZPLFGOTy1pmvD58rZBe4t7Wq9dHa5NiUY0xnr4QTtVcp4ON3ex-h9NHwbPETj1_vHwe04UgmjbZQmQPIiZVonBcRci6QURV4WQiumCeNpInRWFQw4hI0rxgJPNKeMVWmmc0iO0eXGN_T_7sC3clH7fgrVgO28FIQKTgUJ4NUGLJ313kEll65eKLeWlMg-V_mba2DPt6ZdsQD9R26DDEC0AWrfwupXV24uuUgEk2-Tqbz7-IzTpwmVz4G_2PCq9HJmO9eETP5p_AOWFY_v</recordid><startdate>20050512</startdate><enddate>20050512</enddate><creator>Chik, John</creator><creator>Mizrahi, Shimon</creator><creator>Chi, Sulene</creator><creator>Parsegian, V. Adrian</creator><creator>Rau, Donald C</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20050512</creationdate><title>Hydration Forces Underlie the Exclusion of Salts and of Neutral Polar Solutes from Hydroxypropylcellulose</title><author>Chik, John ; Mizrahi, Shimon ; Chi, Sulene ; Parsegian, V. Adrian ; Rau, Donald C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a351t-43e09b45dd3be26d73c7b9cb7da5d056437d8fb5e6e999f553e00d6155f48d9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Cellulose - analogs & derivatives</topic><topic>Cellulose - chemistry</topic><topic>Salts - chemistry</topic><topic>Scattering, Radiation</topic><topic>Thermodynamics</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chik, John</creatorcontrib><creatorcontrib>Mizrahi, Shimon</creatorcontrib><creatorcontrib>Chi, Sulene</creatorcontrib><creatorcontrib>Parsegian, V. Adrian</creatorcontrib><creatorcontrib>Rau, Donald C</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chik, John</au><au>Mizrahi, Shimon</au><au>Chi, Sulene</au><au>Parsegian, V. Adrian</au><au>Rau, Donald C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydration Forces Underlie the Exclusion of Salts and of Neutral Polar Solutes from Hydroxypropylcellulose</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2005-05-12</date><risdate>2005</risdate><volume>109</volume><issue>18</issue><spage>9111</spage><epage>9118</epage><pages>9111-9118</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>The distance dependence for the preferential exclusion of several salts and neutral solutes from hydroxypropyl cellulose (HPC) has been measured via the effect of these small molecules on the thermodynamic forces between HPC polymers in ordered arrays. The concentration of salts and neutral solutes decreases exponentially as the spacing between apposing nonpolar HPC surfaces decreases. For all solutes, the spatial decay lengths of this exclusion are remarkably similar to those observed between many macromolecules at close spacings where intermolecular forces have been ascribed to the energetics of water structuring. Exclusion magnitudes depend strongly on the nature and size of the particular salt or solute; for the three potassium salts studied, exclusion follows the anionic Hofmeister series. The change in the number of excess waters associated with HPC polymers is independent of solute concentration suggesting that the dominating interactions are between solutes and the hydrated polymer. These findings further confirm the importance of solvation interactions and reveal an unexpected unity of Hofmeister effects, preferential hydration, and hydration forces.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>16852084</pmid><doi>10.1021/jp046999k</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1520-6106 |
ispartof | The journal of physical chemistry. B, 2005-05, Vol.109 (18), p.9111-9118 |
issn | 1520-6106 1520-5207 |
language | eng |
recordid | cdi_proquest_miscellaneous_70176170 |
source | MEDLINE; ACS Journals: American Chemical Society Web Editions |
subjects | Cellulose - analogs & derivatives Cellulose - chemistry Salts - chemistry Scattering, Radiation Thermodynamics Water - chemistry |
title | Hydration Forces Underlie the Exclusion of Salts and of Neutral Polar Solutes from Hydroxypropylcellulose |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-10T18%3A44%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydration%20Forces%20Underlie%20the%20Exclusion%20of%20Salts%20and%20of%20Neutral%20Polar%20Solutes%20from%20Hydroxypropylcellulose&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Chik,%20John&rft.date=2005-05-12&rft.volume=109&rft.issue=18&rft.spage=9111&rft.epage=9118&rft.pages=9111-9118&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/jp046999k&rft_dat=%3Cproquest_cross%3E70176170%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70176170&rft_id=info:pmid/16852084&rfr_iscdi=true |