Label-Free DNA Detection of Hepatitis C Virus Based on Modified Conducting Polypyrrole Films at Microelectrodes and Atomic Force Microscopy Tip-Integrated Electrodes
We present a new strategy for the label-free electrochemical detection of DNA hybridization for detecting hepatitis C virus based on electrostatic modulation of the ion-exchange kinetics of a polypyrrole film deposited at microelectrodes. Synthetic single-stranded 18-mer HCV genotype-1-specific prob...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2008-01, Vol.80 (1), p.237-245 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 245 |
---|---|
container_issue | 1 |
container_start_page | 237 |
container_title | Analytical chemistry (Washington) |
container_volume | 80 |
creator | Riccardi, Carla dos Santos Kranz, Christine Kowalik, Janusz Yamanaka, Hideko Mizaikoff, Boris Josowicz, Mira |
description | We present a new strategy for the label-free electrochemical detection of DNA hybridization for detecting hepatitis C virus based on electrostatic modulation of the ion-exchange kinetics of a polypyrrole film deposited at microelectrodes. Synthetic single-stranded 18-mer HCV genotype-1-specific probe DNA has been immobilized at a 2,5-bis(2-thienyl)-N-(3-phosphoryl-n-alkyl)pyrrole film established by electropolymerization at the previously formed polypyrrole layer. HCV DNA sequences (244-mer) resulting from the reverse transcriptase-linked polymerase chain reaction amplification of the original viral RNA were monitored by affecting the ion-exchange properties of the polypyrrole film. The performance of this miniaturized DNA sensor system was studied in respect to selectivity, sensitivity, and reproducibility. The limit of detection was determined at 1.82 × 10-21 mol L-1. Control experiments were performed with cDNA from HCV genotypes 2a/c, 2b, and 3 and did not show any unspecific binding. Additionally, the influence of the spacer length of 2,5-bis(2-thienyl)-N-(3-phosphoryl-n-alkyl)pyrrole on the behavior of the DNA sensor was investigated. This biosensing scheme was finally extended to the electrochemical detection of DNA at submicrometer-sized DNA biosensors integrated into bifunctional atomic force scanning electrochemical microscopy probes. The 18-mer DNA target was again monitored by following the ion-exchange properties of the polypyrrole film. Control experiments were performed with 12-base pair mismatched sequences. |
doi_str_mv | 10.1021/ac701613t |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70175447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1410569341</sourcerecordid><originalsourceid>FETCH-LOGICAL-a505t-41d36c90a935cb7019aca582f29c114a7ea767ce41567eb6bd708579a422bb703</originalsourceid><addsrcrecordid>eNqFkc-O0zAQhyMEYsvCgRdAFhJIHALj_HNyLO2WXamFFZS9WhNnsvKSxMF2JPpAvCeuWrUSHDjZ8nzzyTO_KHrJ4T2HhH9AJYAXPPWPohnPE4iLskweRzMASONEAFxEz5x7AOA8cE-jC15CmmUFzKLfa6ypi1eWiC0_z9mSPCmvzcBMy65pRK-9dmzB7rSdHPuIjhoWqhvT6FaH-8IMzRQ6hnt2a7rduLPWdMRWuusdQ882WllDXZBa01B4Gho296bXiq2MVXQAnDLjjm31GN8Mnu4t-qC-OnU9j5602Dl6cTwvo--rq-3iOl5_-XSzmK9jzCH3ccabtFAVYJXmqg47qVBhXiZtUinOMxSEohCKMp4XguqibgSUuagwS5I68Oll9PbgHa35OZHzstdOUdfhQGZyMihFnmXiv2ACeVkAVAF8_Rf4YCY7hCFkwkVZ8RT2tncHaL8JZ6mVo9U92p3kIPcJy1PCgX11FE51T82ZPEYagDdHAJ3CrrU4KO3OXFWVUGY8cPGB087Tr1Md7Q9ZiFTkcnv7TZb8bplu0q-Sn72o3HmIfz_4B17NyKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217891307</pqid></control><display><type>article</type><title>Label-Free DNA Detection of Hepatitis C Virus Based on Modified Conducting Polypyrrole Films at Microelectrodes and Atomic Force Microscopy Tip-Integrated Electrodes</title><source>MEDLINE</source><source>ACS Publications</source><creator>Riccardi, Carla dos Santos ; Kranz, Christine ; Kowalik, Janusz ; Yamanaka, Hideko ; Mizaikoff, Boris ; Josowicz, Mira</creator><creatorcontrib>Riccardi, Carla dos Santos ; Kranz, Christine ; Kowalik, Janusz ; Yamanaka, Hideko ; Mizaikoff, Boris ; Josowicz, Mira</creatorcontrib><description>We present a new strategy for the label-free electrochemical detection of DNA hybridization for detecting hepatitis C virus based on electrostatic modulation of the ion-exchange kinetics of a polypyrrole film deposited at microelectrodes. Synthetic single-stranded 18-mer HCV genotype-1-specific probe DNA has been immobilized at a 2,5-bis(2-thienyl)-N-(3-phosphoryl-n-alkyl)pyrrole film established by electropolymerization at the previously formed polypyrrole layer. HCV DNA sequences (244-mer) resulting from the reverse transcriptase-linked polymerase chain reaction amplification of the original viral RNA were monitored by affecting the ion-exchange properties of the polypyrrole film. The performance of this miniaturized DNA sensor system was studied in respect to selectivity, sensitivity, and reproducibility. The limit of detection was determined at 1.82 × 10-21 mol L-1. Control experiments were performed with cDNA from HCV genotypes 2a/c, 2b, and 3 and did not show any unspecific binding. Additionally, the influence of the spacer length of 2,5-bis(2-thienyl)-N-(3-phosphoryl-n-alkyl)pyrrole on the behavior of the DNA sensor was investigated. This biosensing scheme was finally extended to the electrochemical detection of DNA at submicrometer-sized DNA biosensors integrated into bifunctional atomic force scanning electrochemical microscopy probes. The 18-mer DNA target was again monitored by following the ion-exchange properties of the polypyrrole film. Control experiments were performed with 12-base pair mismatched sequences.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac701613t</identifier><identifier>PMID: 18034460</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Analytical chemistry ; Base Sequence ; Biological and medical sciences ; Biosensing Techniques - instrumentation ; Biosensing Techniques - methods ; Biosensors ; Biotechnology ; Chemical reactions ; Chemistry ; Deoxyribonucleic acid ; DNA ; DNA Probes - analysis ; DNA Probes - chemistry ; Electrochemical methods ; Electrodes ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; Hepacivirus - genetics ; Hepacivirus - isolation & purification ; Hepatitis C ; Hepatitis C virus ; Humans ; Ion Exchange ; Membranes, Artificial ; Methods. Procedures. Technologies ; Microelectrodes ; Microscopy, Atomic Force ; Nucleic Acid Hybridization ; Polycarboxylate Cement - chemistry ; Polymer films ; Polymers - chemistry ; Porosity ; Pyrroles - chemistry ; Reproducibility of Results ; Sensitivity and Specificity ; Studies ; Various methods and equipments</subject><ispartof>Analytical chemistry (Washington), 2008-01, Vol.80 (1), p.237-245</ispartof><rights>Copyright © 2008 American Chemical Society</rights><rights>2008 INIST-CNRS</rights><rights>Copyright American Chemical Society Jan 1, 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a505t-41d36c90a935cb7019aca582f29c114a7ea767ce41567eb6bd708579a422bb703</citedby><cites>FETCH-LOGICAL-a505t-41d36c90a935cb7019aca582f29c114a7ea767ce41567eb6bd708579a422bb703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac701613t$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac701613t$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19980841$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18034460$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Riccardi, Carla dos Santos</creatorcontrib><creatorcontrib>Kranz, Christine</creatorcontrib><creatorcontrib>Kowalik, Janusz</creatorcontrib><creatorcontrib>Yamanaka, Hideko</creatorcontrib><creatorcontrib>Mizaikoff, Boris</creatorcontrib><creatorcontrib>Josowicz, Mira</creatorcontrib><title>Label-Free DNA Detection of Hepatitis C Virus Based on Modified Conducting Polypyrrole Films at Microelectrodes and Atomic Force Microscopy Tip-Integrated Electrodes</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>We present a new strategy for the label-free electrochemical detection of DNA hybridization for detecting hepatitis C virus based on electrostatic modulation of the ion-exchange kinetics of a polypyrrole film deposited at microelectrodes. Synthetic single-stranded 18-mer HCV genotype-1-specific probe DNA has been immobilized at a 2,5-bis(2-thienyl)-N-(3-phosphoryl-n-alkyl)pyrrole film established by electropolymerization at the previously formed polypyrrole layer. HCV DNA sequences (244-mer) resulting from the reverse transcriptase-linked polymerase chain reaction amplification of the original viral RNA were monitored by affecting the ion-exchange properties of the polypyrrole film. The performance of this miniaturized DNA sensor system was studied in respect to selectivity, sensitivity, and reproducibility. The limit of detection was determined at 1.82 × 10-21 mol L-1. Control experiments were performed with cDNA from HCV genotypes 2a/c, 2b, and 3 and did not show any unspecific binding. Additionally, the influence of the spacer length of 2,5-bis(2-thienyl)-N-(3-phosphoryl-n-alkyl)pyrrole on the behavior of the DNA sensor was investigated. This biosensing scheme was finally extended to the electrochemical detection of DNA at submicrometer-sized DNA biosensors integrated into bifunctional atomic force scanning electrochemical microscopy probes. The 18-mer DNA target was again monitored by following the ion-exchange properties of the polypyrrole film. Control experiments were performed with 12-base pair mismatched sequences.</description><subject>Analytical chemistry</subject><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>Biosensing Techniques - instrumentation</subject><subject>Biosensing Techniques - methods</subject><subject>Biosensors</subject><subject>Biotechnology</subject><subject>Chemical reactions</subject><subject>Chemistry</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Probes - analysis</subject><subject>DNA Probes - chemistry</subject><subject>Electrochemical methods</subject><subject>Electrodes</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hepacivirus - genetics</subject><subject>Hepacivirus - isolation & purification</subject><subject>Hepatitis C</subject><subject>Hepatitis C virus</subject><subject>Humans</subject><subject>Ion Exchange</subject><subject>Membranes, Artificial</subject><subject>Methods. Procedures. Technologies</subject><subject>Microelectrodes</subject><subject>Microscopy, Atomic Force</subject><subject>Nucleic Acid Hybridization</subject><subject>Polycarboxylate Cement - chemistry</subject><subject>Polymer films</subject><subject>Polymers - chemistry</subject><subject>Porosity</subject><subject>Pyrroles - chemistry</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Studies</subject><subject>Various methods and equipments</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc-O0zAQhyMEYsvCgRdAFhJIHALj_HNyLO2WXamFFZS9WhNnsvKSxMF2JPpAvCeuWrUSHDjZ8nzzyTO_KHrJ4T2HhH9AJYAXPPWPohnPE4iLskweRzMASONEAFxEz5x7AOA8cE-jC15CmmUFzKLfa6ypi1eWiC0_z9mSPCmvzcBMy65pRK-9dmzB7rSdHPuIjhoWqhvT6FaH-8IMzRQ6hnt2a7rduLPWdMRWuusdQ882WllDXZBa01B4Gho296bXiq2MVXQAnDLjjm31GN8Mnu4t-qC-OnU9j5602Dl6cTwvo--rq-3iOl5_-XSzmK9jzCH3ccabtFAVYJXmqg47qVBhXiZtUinOMxSEohCKMp4XguqibgSUuagwS5I68Oll9PbgHa35OZHzstdOUdfhQGZyMihFnmXiv2ACeVkAVAF8_Rf4YCY7hCFkwkVZ8RT2tncHaL8JZ6mVo9U92p3kIPcJy1PCgX11FE51T82ZPEYagDdHAJ3CrrU4KO3OXFWVUGY8cPGB087Tr1Md7Q9ZiFTkcnv7TZb8bplu0q-Sn72o3HmIfz_4B17NyKA</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Riccardi, Carla dos Santos</creator><creator>Kranz, Christine</creator><creator>Kowalik, Janusz</creator><creator>Yamanaka, Hideko</creator><creator>Mizaikoff, Boris</creator><creator>Josowicz, Mira</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20080101</creationdate><title>Label-Free DNA Detection of Hepatitis C Virus Based on Modified Conducting Polypyrrole Films at Microelectrodes and Atomic Force Microscopy Tip-Integrated Electrodes</title><author>Riccardi, Carla dos Santos ; Kranz, Christine ; Kowalik, Janusz ; Yamanaka, Hideko ; Mizaikoff, Boris ; Josowicz, Mira</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a505t-41d36c90a935cb7019aca582f29c114a7ea767ce41567eb6bd708579a422bb703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Analytical chemistry</topic><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>Biosensing Techniques - instrumentation</topic><topic>Biosensing Techniques - methods</topic><topic>Biosensors</topic><topic>Biotechnology</topic><topic>Chemical reactions</topic><topic>Chemistry</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Probes - analysis</topic><topic>DNA Probes - chemistry</topic><topic>Electrochemical methods</topic><topic>Electrodes</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hepacivirus - genetics</topic><topic>Hepacivirus - isolation & purification</topic><topic>Hepatitis C</topic><topic>Hepatitis C virus</topic><topic>Humans</topic><topic>Ion Exchange</topic><topic>Membranes, Artificial</topic><topic>Methods. Procedures. Technologies</topic><topic>Microelectrodes</topic><topic>Microscopy, Atomic Force</topic><topic>Nucleic Acid Hybridization</topic><topic>Polycarboxylate Cement - chemistry</topic><topic>Polymer films</topic><topic>Polymers - chemistry</topic><topic>Porosity</topic><topic>Pyrroles - chemistry</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Studies</topic><topic>Various methods and equipments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Riccardi, Carla dos Santos</creatorcontrib><creatorcontrib>Kranz, Christine</creatorcontrib><creatorcontrib>Kowalik, Janusz</creatorcontrib><creatorcontrib>Yamanaka, Hideko</creatorcontrib><creatorcontrib>Mizaikoff, Boris</creatorcontrib><creatorcontrib>Josowicz, Mira</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Riccardi, Carla dos Santos</au><au>Kranz, Christine</au><au>Kowalik, Janusz</au><au>Yamanaka, Hideko</au><au>Mizaikoff, Boris</au><au>Josowicz, Mira</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Label-Free DNA Detection of Hepatitis C Virus Based on Modified Conducting Polypyrrole Films at Microelectrodes and Atomic Force Microscopy Tip-Integrated Electrodes</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2008-01-01</date><risdate>2008</risdate><volume>80</volume><issue>1</issue><spage>237</spage><epage>245</epage><pages>237-245</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>We present a new strategy for the label-free electrochemical detection of DNA hybridization for detecting hepatitis C virus based on electrostatic modulation of the ion-exchange kinetics of a polypyrrole film deposited at microelectrodes. Synthetic single-stranded 18-mer HCV genotype-1-specific probe DNA has been immobilized at a 2,5-bis(2-thienyl)-N-(3-phosphoryl-n-alkyl)pyrrole film established by electropolymerization at the previously formed polypyrrole layer. HCV DNA sequences (244-mer) resulting from the reverse transcriptase-linked polymerase chain reaction amplification of the original viral RNA were monitored by affecting the ion-exchange properties of the polypyrrole film. The performance of this miniaturized DNA sensor system was studied in respect to selectivity, sensitivity, and reproducibility. The limit of detection was determined at 1.82 × 10-21 mol L-1. Control experiments were performed with cDNA from HCV genotypes 2a/c, 2b, and 3 and did not show any unspecific binding. Additionally, the influence of the spacer length of 2,5-bis(2-thienyl)-N-(3-phosphoryl-n-alkyl)pyrrole on the behavior of the DNA sensor was investigated. This biosensing scheme was finally extended to the electrochemical detection of DNA at submicrometer-sized DNA biosensors integrated into bifunctional atomic force scanning electrochemical microscopy probes. The 18-mer DNA target was again monitored by following the ion-exchange properties of the polypyrrole film. Control experiments were performed with 12-base pair mismatched sequences.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>18034460</pmid><doi>10.1021/ac701613t</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2008-01, Vol.80 (1), p.237-245 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_70175447 |
source | MEDLINE; ACS Publications |
subjects | Analytical chemistry Base Sequence Biological and medical sciences Biosensing Techniques - instrumentation Biosensing Techniques - methods Biosensors Biotechnology Chemical reactions Chemistry Deoxyribonucleic acid DNA DNA Probes - analysis DNA Probes - chemistry Electrochemical methods Electrodes Exact sciences and technology Fundamental and applied biological sciences. Psychology Hepacivirus - genetics Hepacivirus - isolation & purification Hepatitis C Hepatitis C virus Humans Ion Exchange Membranes, Artificial Methods. Procedures. Technologies Microelectrodes Microscopy, Atomic Force Nucleic Acid Hybridization Polycarboxylate Cement - chemistry Polymer films Polymers - chemistry Porosity Pyrroles - chemistry Reproducibility of Results Sensitivity and Specificity Studies Various methods and equipments |
title | Label-Free DNA Detection of Hepatitis C Virus Based on Modified Conducting Polypyrrole Films at Microelectrodes and Atomic Force Microscopy Tip-Integrated Electrodes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T05%3A02%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Label-Free%20DNA%20Detection%20of%20Hepatitis%20C%20Virus%20Based%20on%20Modified%20Conducting%20Polypyrrole%20Films%20at%20Microelectrodes%20and%20Atomic%20Force%20Microscopy%20Tip-Integrated%20Electrodes&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Riccardi,%20Carla%20dos%20Santos&rft.date=2008-01-01&rft.volume=80&rft.issue=1&rft.spage=237&rft.epage=245&rft.pages=237-245&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac701613t&rft_dat=%3Cproquest_cross%3E1410569341%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217891307&rft_id=info:pmid/18034460&rfr_iscdi=true |