Label-Free DNA Detection of Hepatitis C Virus Based on Modified Conducting Polypyrrole Films at Microelectrodes and Atomic Force Microscopy Tip-Integrated Electrodes

We present a new strategy for the label-free electrochemical detection of DNA hybridization for detecting hepatitis C virus based on electrostatic modulation of the ion-exchange kinetics of a polypyrrole film deposited at microelectrodes. Synthetic single-stranded 18-mer HCV genotype-1-specific prob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2008-01, Vol.80 (1), p.237-245
Hauptverfasser: Riccardi, Carla dos Santos, Kranz, Christine, Kowalik, Janusz, Yamanaka, Hideko, Mizaikoff, Boris, Josowicz, Mira
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 245
container_issue 1
container_start_page 237
container_title Analytical chemistry (Washington)
container_volume 80
creator Riccardi, Carla dos Santos
Kranz, Christine
Kowalik, Janusz
Yamanaka, Hideko
Mizaikoff, Boris
Josowicz, Mira
description We present a new strategy for the label-free electrochemical detection of DNA hybridization for detecting hepatitis C virus based on electrostatic modulation of the ion-exchange kinetics of a polypyrrole film deposited at microelectrodes. Synthetic single-stranded 18-mer HCV genotype-1-specific probe DNA has been immobilized at a 2,5-bis(2-thienyl)-N-(3-phosphoryl-n-alkyl)pyrrole film established by electropolymerization at the previously formed polypyrrole layer. HCV DNA sequences (244-mer) resulting from the reverse transcriptase-linked polymerase chain reaction amplification of the original viral RNA were monitored by affecting the ion-exchange properties of the polypyrrole film. The performance of this miniaturized DNA sensor system was studied in respect to selectivity, sensitivity, and reproducibility. The limit of detection was determined at 1.82 × 10-21 mol L-1. Control experiments were performed with cDNA from HCV genotypes 2a/c, 2b, and 3 and did not show any unspecific binding. Additionally, the influence of the spacer length of 2,5-bis(2-thienyl)-N-(3-phosphoryl-n-alkyl)pyrrole on the behavior of the DNA sensor was investigated. This biosensing scheme was finally extended to the electrochemical detection of DNA at submicrometer-sized DNA biosensors integrated into bifunctional atomic force scanning electrochemical microscopy probes. The 18-mer DNA target was again monitored by following the ion-exchange properties of the polypyrrole film. Control experiments were performed with 12-base pair mismatched sequences.
doi_str_mv 10.1021/ac701613t
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70175447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1410569341</sourcerecordid><originalsourceid>FETCH-LOGICAL-a505t-41d36c90a935cb7019aca582f29c114a7ea767ce41567eb6bd708579a422bb703</originalsourceid><addsrcrecordid>eNqFkc-O0zAQhyMEYsvCgRdAFhJIHALj_HNyLO2WXamFFZS9WhNnsvKSxMF2JPpAvCeuWrUSHDjZ8nzzyTO_KHrJ4T2HhH9AJYAXPPWPohnPE4iLskweRzMASONEAFxEz5x7AOA8cE-jC15CmmUFzKLfa6ypi1eWiC0_z9mSPCmvzcBMy65pRK-9dmzB7rSdHPuIjhoWqhvT6FaH-8IMzRQ6hnt2a7rduLPWdMRWuusdQ882WllDXZBa01B4Gho296bXiq2MVXQAnDLjjm31GN8Mnu4t-qC-OnU9j5602Dl6cTwvo--rq-3iOl5_-XSzmK9jzCH3ccabtFAVYJXmqg47qVBhXiZtUinOMxSEohCKMp4XguqibgSUuagwS5I68Oll9PbgHa35OZHzstdOUdfhQGZyMihFnmXiv2ACeVkAVAF8_Rf4YCY7hCFkwkVZ8RT2tncHaL8JZ6mVo9U92p3kIPcJy1PCgX11FE51T82ZPEYagDdHAJ3CrrU4KO3OXFWVUGY8cPGB087Tr1Md7Q9ZiFTkcnv7TZb8bplu0q-Sn72o3HmIfz_4B17NyKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217891307</pqid></control><display><type>article</type><title>Label-Free DNA Detection of Hepatitis C Virus Based on Modified Conducting Polypyrrole Films at Microelectrodes and Atomic Force Microscopy Tip-Integrated Electrodes</title><source>MEDLINE</source><source>ACS Publications</source><creator>Riccardi, Carla dos Santos ; Kranz, Christine ; Kowalik, Janusz ; Yamanaka, Hideko ; Mizaikoff, Boris ; Josowicz, Mira</creator><creatorcontrib>Riccardi, Carla dos Santos ; Kranz, Christine ; Kowalik, Janusz ; Yamanaka, Hideko ; Mizaikoff, Boris ; Josowicz, Mira</creatorcontrib><description>We present a new strategy for the label-free electrochemical detection of DNA hybridization for detecting hepatitis C virus based on electrostatic modulation of the ion-exchange kinetics of a polypyrrole film deposited at microelectrodes. Synthetic single-stranded 18-mer HCV genotype-1-specific probe DNA has been immobilized at a 2,5-bis(2-thienyl)-N-(3-phosphoryl-n-alkyl)pyrrole film established by electropolymerization at the previously formed polypyrrole layer. HCV DNA sequences (244-mer) resulting from the reverse transcriptase-linked polymerase chain reaction amplification of the original viral RNA were monitored by affecting the ion-exchange properties of the polypyrrole film. The performance of this miniaturized DNA sensor system was studied in respect to selectivity, sensitivity, and reproducibility. The limit of detection was determined at 1.82 × 10-21 mol L-1. Control experiments were performed with cDNA from HCV genotypes 2a/c, 2b, and 3 and did not show any unspecific binding. Additionally, the influence of the spacer length of 2,5-bis(2-thienyl)-N-(3-phosphoryl-n-alkyl)pyrrole on the behavior of the DNA sensor was investigated. This biosensing scheme was finally extended to the electrochemical detection of DNA at submicrometer-sized DNA biosensors integrated into bifunctional atomic force scanning electrochemical microscopy probes. The 18-mer DNA target was again monitored by following the ion-exchange properties of the polypyrrole film. Control experiments were performed with 12-base pair mismatched sequences.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac701613t</identifier><identifier>PMID: 18034460</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Analytical chemistry ; Base Sequence ; Biological and medical sciences ; Biosensing Techniques - instrumentation ; Biosensing Techniques - methods ; Biosensors ; Biotechnology ; Chemical reactions ; Chemistry ; Deoxyribonucleic acid ; DNA ; DNA Probes - analysis ; DNA Probes - chemistry ; Electrochemical methods ; Electrodes ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; Hepacivirus - genetics ; Hepacivirus - isolation &amp; purification ; Hepatitis C ; Hepatitis C virus ; Humans ; Ion Exchange ; Membranes, Artificial ; Methods. Procedures. Technologies ; Microelectrodes ; Microscopy, Atomic Force ; Nucleic Acid Hybridization ; Polycarboxylate Cement - chemistry ; Polymer films ; Polymers - chemistry ; Porosity ; Pyrroles - chemistry ; Reproducibility of Results ; Sensitivity and Specificity ; Studies ; Various methods and equipments</subject><ispartof>Analytical chemistry (Washington), 2008-01, Vol.80 (1), p.237-245</ispartof><rights>Copyright © 2008 American Chemical Society</rights><rights>2008 INIST-CNRS</rights><rights>Copyright American Chemical Society Jan 1, 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a505t-41d36c90a935cb7019aca582f29c114a7ea767ce41567eb6bd708579a422bb703</citedby><cites>FETCH-LOGICAL-a505t-41d36c90a935cb7019aca582f29c114a7ea767ce41567eb6bd708579a422bb703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac701613t$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac701613t$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27081,27929,27930,56743,56793</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19980841$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18034460$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Riccardi, Carla dos Santos</creatorcontrib><creatorcontrib>Kranz, Christine</creatorcontrib><creatorcontrib>Kowalik, Janusz</creatorcontrib><creatorcontrib>Yamanaka, Hideko</creatorcontrib><creatorcontrib>Mizaikoff, Boris</creatorcontrib><creatorcontrib>Josowicz, Mira</creatorcontrib><title>Label-Free DNA Detection of Hepatitis C Virus Based on Modified Conducting Polypyrrole Films at Microelectrodes and Atomic Force Microscopy Tip-Integrated Electrodes</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>We present a new strategy for the label-free electrochemical detection of DNA hybridization for detecting hepatitis C virus based on electrostatic modulation of the ion-exchange kinetics of a polypyrrole film deposited at microelectrodes. Synthetic single-stranded 18-mer HCV genotype-1-specific probe DNA has been immobilized at a 2,5-bis(2-thienyl)-N-(3-phosphoryl-n-alkyl)pyrrole film established by electropolymerization at the previously formed polypyrrole layer. HCV DNA sequences (244-mer) resulting from the reverse transcriptase-linked polymerase chain reaction amplification of the original viral RNA were monitored by affecting the ion-exchange properties of the polypyrrole film. The performance of this miniaturized DNA sensor system was studied in respect to selectivity, sensitivity, and reproducibility. The limit of detection was determined at 1.82 × 10-21 mol L-1. Control experiments were performed with cDNA from HCV genotypes 2a/c, 2b, and 3 and did not show any unspecific binding. Additionally, the influence of the spacer length of 2,5-bis(2-thienyl)-N-(3-phosphoryl-n-alkyl)pyrrole on the behavior of the DNA sensor was investigated. This biosensing scheme was finally extended to the electrochemical detection of DNA at submicrometer-sized DNA biosensors integrated into bifunctional atomic force scanning electrochemical microscopy probes. The 18-mer DNA target was again monitored by following the ion-exchange properties of the polypyrrole film. Control experiments were performed with 12-base pair mismatched sequences.</description><subject>Analytical chemistry</subject><subject>Base Sequence</subject><subject>Biological and medical sciences</subject><subject>Biosensing Techniques - instrumentation</subject><subject>Biosensing Techniques - methods</subject><subject>Biosensors</subject><subject>Biotechnology</subject><subject>Chemical reactions</subject><subject>Chemistry</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Probes - analysis</subject><subject>DNA Probes - chemistry</subject><subject>Electrochemical methods</subject><subject>Electrodes</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hepacivirus - genetics</subject><subject>Hepacivirus - isolation &amp; purification</subject><subject>Hepatitis C</subject><subject>Hepatitis C virus</subject><subject>Humans</subject><subject>Ion Exchange</subject><subject>Membranes, Artificial</subject><subject>Methods. Procedures. Technologies</subject><subject>Microelectrodes</subject><subject>Microscopy, Atomic Force</subject><subject>Nucleic Acid Hybridization</subject><subject>Polycarboxylate Cement - chemistry</subject><subject>Polymer films</subject><subject>Polymers - chemistry</subject><subject>Porosity</subject><subject>Pyrroles - chemistry</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Studies</subject><subject>Various methods and equipments</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc-O0zAQhyMEYsvCgRdAFhJIHALj_HNyLO2WXamFFZS9WhNnsvKSxMF2JPpAvCeuWrUSHDjZ8nzzyTO_KHrJ4T2HhH9AJYAXPPWPohnPE4iLskweRzMASONEAFxEz5x7AOA8cE-jC15CmmUFzKLfa6ypi1eWiC0_z9mSPCmvzcBMy65pRK-9dmzB7rSdHPuIjhoWqhvT6FaH-8IMzRQ6hnt2a7rduLPWdMRWuusdQ882WllDXZBa01B4Gho296bXiq2MVXQAnDLjjm31GN8Mnu4t-qC-OnU9j5602Dl6cTwvo--rq-3iOl5_-XSzmK9jzCH3ccabtFAVYJXmqg47qVBhXiZtUinOMxSEohCKMp4XguqibgSUuagwS5I68Oll9PbgHa35OZHzstdOUdfhQGZyMihFnmXiv2ACeVkAVAF8_Rf4YCY7hCFkwkVZ8RT2tncHaL8JZ6mVo9U92p3kIPcJy1PCgX11FE51T82ZPEYagDdHAJ3CrrU4KO3OXFWVUGY8cPGB087Tr1Md7Q9ZiFTkcnv7TZb8bplu0q-Sn72o3HmIfz_4B17NyKA</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Riccardi, Carla dos Santos</creator><creator>Kranz, Christine</creator><creator>Kowalik, Janusz</creator><creator>Yamanaka, Hideko</creator><creator>Mizaikoff, Boris</creator><creator>Josowicz, Mira</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20080101</creationdate><title>Label-Free DNA Detection of Hepatitis C Virus Based on Modified Conducting Polypyrrole Films at Microelectrodes and Atomic Force Microscopy Tip-Integrated Electrodes</title><author>Riccardi, Carla dos Santos ; Kranz, Christine ; Kowalik, Janusz ; Yamanaka, Hideko ; Mizaikoff, Boris ; Josowicz, Mira</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a505t-41d36c90a935cb7019aca582f29c114a7ea767ce41567eb6bd708579a422bb703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Analytical chemistry</topic><topic>Base Sequence</topic><topic>Biological and medical sciences</topic><topic>Biosensing Techniques - instrumentation</topic><topic>Biosensing Techniques - methods</topic><topic>Biosensors</topic><topic>Biotechnology</topic><topic>Chemical reactions</topic><topic>Chemistry</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Probes - analysis</topic><topic>DNA Probes - chemistry</topic><topic>Electrochemical methods</topic><topic>Electrodes</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hepacivirus - genetics</topic><topic>Hepacivirus - isolation &amp; purification</topic><topic>Hepatitis C</topic><topic>Hepatitis C virus</topic><topic>Humans</topic><topic>Ion Exchange</topic><topic>Membranes, Artificial</topic><topic>Methods. Procedures. Technologies</topic><topic>Microelectrodes</topic><topic>Microscopy, Atomic Force</topic><topic>Nucleic Acid Hybridization</topic><topic>Polycarboxylate Cement - chemistry</topic><topic>Polymer films</topic><topic>Polymers - chemistry</topic><topic>Porosity</topic><topic>Pyrroles - chemistry</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Studies</topic><topic>Various methods and equipments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Riccardi, Carla dos Santos</creatorcontrib><creatorcontrib>Kranz, Christine</creatorcontrib><creatorcontrib>Kowalik, Janusz</creatorcontrib><creatorcontrib>Yamanaka, Hideko</creatorcontrib><creatorcontrib>Mizaikoff, Boris</creatorcontrib><creatorcontrib>Josowicz, Mira</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Riccardi, Carla dos Santos</au><au>Kranz, Christine</au><au>Kowalik, Janusz</au><au>Yamanaka, Hideko</au><au>Mizaikoff, Boris</au><au>Josowicz, Mira</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Label-Free DNA Detection of Hepatitis C Virus Based on Modified Conducting Polypyrrole Films at Microelectrodes and Atomic Force Microscopy Tip-Integrated Electrodes</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2008-01-01</date><risdate>2008</risdate><volume>80</volume><issue>1</issue><spage>237</spage><epage>245</epage><pages>237-245</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>We present a new strategy for the label-free electrochemical detection of DNA hybridization for detecting hepatitis C virus based on electrostatic modulation of the ion-exchange kinetics of a polypyrrole film deposited at microelectrodes. Synthetic single-stranded 18-mer HCV genotype-1-specific probe DNA has been immobilized at a 2,5-bis(2-thienyl)-N-(3-phosphoryl-n-alkyl)pyrrole film established by electropolymerization at the previously formed polypyrrole layer. HCV DNA sequences (244-mer) resulting from the reverse transcriptase-linked polymerase chain reaction amplification of the original viral RNA were monitored by affecting the ion-exchange properties of the polypyrrole film. The performance of this miniaturized DNA sensor system was studied in respect to selectivity, sensitivity, and reproducibility. The limit of detection was determined at 1.82 × 10-21 mol L-1. Control experiments were performed with cDNA from HCV genotypes 2a/c, 2b, and 3 and did not show any unspecific binding. Additionally, the influence of the spacer length of 2,5-bis(2-thienyl)-N-(3-phosphoryl-n-alkyl)pyrrole on the behavior of the DNA sensor was investigated. This biosensing scheme was finally extended to the electrochemical detection of DNA at submicrometer-sized DNA biosensors integrated into bifunctional atomic force scanning electrochemical microscopy probes. The 18-mer DNA target was again monitored by following the ion-exchange properties of the polypyrrole film. Control experiments were performed with 12-base pair mismatched sequences.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>18034460</pmid><doi>10.1021/ac701613t</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2008-01, Vol.80 (1), p.237-245
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_70175447
source MEDLINE; ACS Publications
subjects Analytical chemistry
Base Sequence
Biological and medical sciences
Biosensing Techniques - instrumentation
Biosensing Techniques - methods
Biosensors
Biotechnology
Chemical reactions
Chemistry
Deoxyribonucleic acid
DNA
DNA Probes - analysis
DNA Probes - chemistry
Electrochemical methods
Electrodes
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
Hepacivirus - genetics
Hepacivirus - isolation & purification
Hepatitis C
Hepatitis C virus
Humans
Ion Exchange
Membranes, Artificial
Methods. Procedures. Technologies
Microelectrodes
Microscopy, Atomic Force
Nucleic Acid Hybridization
Polycarboxylate Cement - chemistry
Polymer films
Polymers - chemistry
Porosity
Pyrroles - chemistry
Reproducibility of Results
Sensitivity and Specificity
Studies
Various methods and equipments
title Label-Free DNA Detection of Hepatitis C Virus Based on Modified Conducting Polypyrrole Films at Microelectrodes and Atomic Force Microscopy Tip-Integrated Electrodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T05%3A02%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Label-Free%20DNA%20Detection%20of%20Hepatitis%20C%20Virus%20Based%20on%20Modified%20Conducting%20Polypyrrole%20Films%20at%20Microelectrodes%20and%20Atomic%20Force%20Microscopy%20Tip-Integrated%20Electrodes&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Riccardi,%20Carla%20dos%20Santos&rft.date=2008-01-01&rft.volume=80&rft.issue=1&rft.spage=237&rft.epage=245&rft.pages=237-245&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac701613t&rft_dat=%3Cproquest_cross%3E1410569341%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=217891307&rft_id=info:pmid/18034460&rfr_iscdi=true