Theoretical Investigation of the Hydrogen Abstraction Reaction of the OH Radical with CH3CHF2 (HFC152-a):  A Dual Level Direct Density Functional Theory Dynamics Study

The hydrogen abstraction reaction of the OH radical with CH3CHF2 (HFC152-a) has been studied theoretically over a wide temperature range, 200−3000 K. Two different reactive sites of the molecule, CH3 and CHF2 groups have been investigated precisely, and results confirm that CHF2 position of the mole...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2005-09, Vol.109 (36), p.8158-8167
Hauptverfasser: Taghikhani, Mahdi, Parsafar, G. A, Sabzyan, Hassan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8167
container_issue 36
container_start_page 8158
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 109
creator Taghikhani, Mahdi
Parsafar, G. A
Sabzyan, Hassan
description The hydrogen abstraction reaction of the OH radical with CH3CHF2 (HFC152-a) has been studied theoretically over a wide temperature range, 200−3000 K. Two different reactive sites of the molecule, CH3 and CHF2 groups have been investigated precisely, and results confirm that CHF2 position of the molecule is a highly reactive site. In this study, three recently developed hybrid density functional theories, namely, MPWB1K, MPW1B95, and MPW1K, are used. The MPWB1K/6-31+G(d,p) method gives the best result for kinetic calculations, including barrier heights, reaction path information and geometry of transition state structures and other stationary points. To refine the barrier height of each channel, a single point energy calculation was performed in MPWB1K/MG3S method. The obtained rate constants by dual level direct dynamics with the interpolated single point energy method (VTST-ISPE) using DFT quantum computational methods, are consistent with available experimental data. The canonical variational transition state theory (CVT) with the zero-curvature and also the small-curvature tunneling correction methods is used to calculate the rate constants. Over the temperature range 200−3000 K, the variation effect, tunneling contribution, branching ratio of each channel are calculated. The rate constants and their temperature dependency in the form of a fitted three-parameter Arrhenius expression are k 1(T) = 2.00 × 10-19(T)2.24 exp(−1273/T), k 2(T) = 1.95 × 10-19(T)2.46 exp(−2374/T), and k(T) = 3.13 × 10-19(T)2.47 exp(− 1694/T) cm3 molecule-1 s-1. For the H abstraction from the CHF2 group, a nonclassical reflection effect is detected as a dominant quantum effect.
doi_str_mv 10.1021/jp0524173
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_70173723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70173723</sourcerecordid><originalsourceid>FETCH-LOGICAL-a277t-e372cf6458feee82befbe86af61273bc37782c7bab0c055f7e731c3543ded15d3</originalsourceid><addsrcrecordid>eNo9kc1u1DAUhS1ERUthwQsgb0B0EfBPHKfsRpkOKYxUaAfEznKcm46HTDLYTiE7tn2UvlafBDMzdHWPdD4dXZ2D0AtK3lLC6LvVhgiWUskfoSMqGEkEo-Jx1CQ_TUTGTw_RU-9XhBDKWfoEHdIs5ykj7AjdLZbQOwjW6Bafdzfgg73WwfYd7hscloDLsXb9NXR4UvngtNl6l7AXe-iixJe63ob8smGJi5IX5YzhN-WsiB8l-uT9_Z9bPMHTISJzuIEWT60DE_AUOm_DiGdDt42M_vanEU_HTq-t8fgqDPX4DB00uvXwfH-P0dfZ2aIok_nFh_NiMk80kzIkwCUzTZaKvAGAnFXQVJBnuskok7wyXMqcGVnpihgiRCNBcmq4SHkNNRU1P0avd7kb1_8cYh9qbb2BttUd9INXksSiJeMRfLkHh2oNtdo4u9ZuVP_LjUCyA6wP8PvB1-6HymKEUIvPV2rxJf3OPpGP6lvkX-14bbxa9YOLXXhFifo3snoYmf8FGfGWmQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70173723</pqid></control><display><type>article</type><title>Theoretical Investigation of the Hydrogen Abstraction Reaction of the OH Radical with CH3CHF2 (HFC152-a):  A Dual Level Direct Density Functional Theory Dynamics Study</title><source>ACS Publications</source><creator>Taghikhani, Mahdi ; Parsafar, G. A ; Sabzyan, Hassan</creator><creatorcontrib>Taghikhani, Mahdi ; Parsafar, G. A ; Sabzyan, Hassan</creatorcontrib><description>The hydrogen abstraction reaction of the OH radical with CH3CHF2 (HFC152-a) has been studied theoretically over a wide temperature range, 200−3000 K. Two different reactive sites of the molecule, CH3 and CHF2 groups have been investigated precisely, and results confirm that CHF2 position of the molecule is a highly reactive site. In this study, three recently developed hybrid density functional theories, namely, MPWB1K, MPW1B95, and MPW1K, are used. The MPWB1K/6-31+G(d,p) method gives the best result for kinetic calculations, including barrier heights, reaction path information and geometry of transition state structures and other stationary points. To refine the barrier height of each channel, a single point energy calculation was performed in MPWB1K/MG3S method. The obtained rate constants by dual level direct dynamics with the interpolated single point energy method (VTST-ISPE) using DFT quantum computational methods, are consistent with available experimental data. The canonical variational transition state theory (CVT) with the zero-curvature and also the small-curvature tunneling correction methods is used to calculate the rate constants. Over the temperature range 200−3000 K, the variation effect, tunneling contribution, branching ratio of each channel are calculated. The rate constants and their temperature dependency in the form of a fitted three-parameter Arrhenius expression are k 1(T) = 2.00 × 10-19(T)2.24 exp(−1273/T), k 2(T) = 1.95 × 10-19(T)2.46 exp(−2374/T), and k(T) = 3.13 × 10-19(T)2.47 exp(− 1694/T) cm3 molecule-1 s-1. For the H abstraction from the CHF2 group, a nonclassical reflection effect is detected as a dominant quantum effect.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/jp0524173</identifier><identifier>PMID: 16834202</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2005-09, Vol.109 (36), p.8158-8167</ispartof><rights>Copyright © 2005 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp0524173$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp0524173$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16834202$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Taghikhani, Mahdi</creatorcontrib><creatorcontrib>Parsafar, G. A</creatorcontrib><creatorcontrib>Sabzyan, Hassan</creatorcontrib><title>Theoretical Investigation of the Hydrogen Abstraction Reaction of the OH Radical with CH3CHF2 (HFC152-a):  A Dual Level Direct Density Functional Theory Dynamics Study</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>The hydrogen abstraction reaction of the OH radical with CH3CHF2 (HFC152-a) has been studied theoretically over a wide temperature range, 200−3000 K. Two different reactive sites of the molecule, CH3 and CHF2 groups have been investigated precisely, and results confirm that CHF2 position of the molecule is a highly reactive site. In this study, three recently developed hybrid density functional theories, namely, MPWB1K, MPW1B95, and MPW1K, are used. The MPWB1K/6-31+G(d,p) method gives the best result for kinetic calculations, including barrier heights, reaction path information and geometry of transition state structures and other stationary points. To refine the barrier height of each channel, a single point energy calculation was performed in MPWB1K/MG3S method. The obtained rate constants by dual level direct dynamics with the interpolated single point energy method (VTST-ISPE) using DFT quantum computational methods, are consistent with available experimental data. The canonical variational transition state theory (CVT) with the zero-curvature and also the small-curvature tunneling correction methods is used to calculate the rate constants. Over the temperature range 200−3000 K, the variation effect, tunneling contribution, branching ratio of each channel are calculated. The rate constants and their temperature dependency in the form of a fitted three-parameter Arrhenius expression are k 1(T) = 2.00 × 10-19(T)2.24 exp(−1273/T), k 2(T) = 1.95 × 10-19(T)2.46 exp(−2374/T), and k(T) = 3.13 × 10-19(T)2.47 exp(− 1694/T) cm3 molecule-1 s-1. For the H abstraction from the CHF2 group, a nonclassical reflection effect is detected as a dominant quantum effect.</description><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNo9kc1u1DAUhS1ERUthwQsgb0B0EfBPHKfsRpkOKYxUaAfEznKcm46HTDLYTiE7tn2UvlafBDMzdHWPdD4dXZ2D0AtK3lLC6LvVhgiWUskfoSMqGEkEo-Jx1CQ_TUTGTw_RU-9XhBDKWfoEHdIs5ykj7AjdLZbQOwjW6Bafdzfgg73WwfYd7hscloDLsXb9NXR4UvngtNl6l7AXe-iixJe63ob8smGJi5IX5YzhN-WsiB8l-uT9_Z9bPMHTISJzuIEWT60DE_AUOm_DiGdDt42M_vanEU_HTq-t8fgqDPX4DB00uvXwfH-P0dfZ2aIok_nFh_NiMk80kzIkwCUzTZaKvAGAnFXQVJBnuskok7wyXMqcGVnpihgiRCNBcmq4SHkNNRU1P0avd7kb1_8cYh9qbb2BttUd9INXksSiJeMRfLkHh2oNtdo4u9ZuVP_LjUCyA6wP8PvB1-6HymKEUIvPV2rxJf3OPpGP6lvkX-14bbxa9YOLXXhFifo3snoYmf8FGfGWmQ</recordid><startdate>20050915</startdate><enddate>20050915</enddate><creator>Taghikhani, Mahdi</creator><creator>Parsafar, G. A</creator><creator>Sabzyan, Hassan</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20050915</creationdate><title>Theoretical Investigation of the Hydrogen Abstraction Reaction of the OH Radical with CH3CHF2 (HFC152-a):  A Dual Level Direct Density Functional Theory Dynamics Study</title><author>Taghikhani, Mahdi ; Parsafar, G. A ; Sabzyan, Hassan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a277t-e372cf6458feee82befbe86af61273bc37782c7bab0c055f7e731c3543ded15d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taghikhani, Mahdi</creatorcontrib><creatorcontrib>Parsafar, G. A</creatorcontrib><creatorcontrib>Sabzyan, Hassan</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taghikhani, Mahdi</au><au>Parsafar, G. A</au><au>Sabzyan, Hassan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical Investigation of the Hydrogen Abstraction Reaction of the OH Radical with CH3CHF2 (HFC152-a):  A Dual Level Direct Density Functional Theory Dynamics Study</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2005-09-15</date><risdate>2005</risdate><volume>109</volume><issue>36</issue><spage>8158</spage><epage>8167</epage><pages>8158-8167</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>The hydrogen abstraction reaction of the OH radical with CH3CHF2 (HFC152-a) has been studied theoretically over a wide temperature range, 200−3000 K. Two different reactive sites of the molecule, CH3 and CHF2 groups have been investigated precisely, and results confirm that CHF2 position of the molecule is a highly reactive site. In this study, three recently developed hybrid density functional theories, namely, MPWB1K, MPW1B95, and MPW1K, are used. The MPWB1K/6-31+G(d,p) method gives the best result for kinetic calculations, including barrier heights, reaction path information and geometry of transition state structures and other stationary points. To refine the barrier height of each channel, a single point energy calculation was performed in MPWB1K/MG3S method. The obtained rate constants by dual level direct dynamics with the interpolated single point energy method (VTST-ISPE) using DFT quantum computational methods, are consistent with available experimental data. The canonical variational transition state theory (CVT) with the zero-curvature and also the small-curvature tunneling correction methods is used to calculate the rate constants. Over the temperature range 200−3000 K, the variation effect, tunneling contribution, branching ratio of each channel are calculated. The rate constants and their temperature dependency in the form of a fitted three-parameter Arrhenius expression are k 1(T) = 2.00 × 10-19(T)2.24 exp(−1273/T), k 2(T) = 1.95 × 10-19(T)2.46 exp(−2374/T), and k(T) = 3.13 × 10-19(T)2.47 exp(− 1694/T) cm3 molecule-1 s-1. For the H abstraction from the CHF2 group, a nonclassical reflection effect is detected as a dominant quantum effect.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>16834202</pmid><doi>10.1021/jp0524173</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2005-09, Vol.109 (36), p.8158-8167
issn 1089-5639
1520-5215
language eng
recordid cdi_proquest_miscellaneous_70173723
source ACS Publications
title Theoretical Investigation of the Hydrogen Abstraction Reaction of the OH Radical with CH3CHF2 (HFC152-a):  A Dual Level Direct Density Functional Theory Dynamics Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T03%3A38%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20Investigation%20of%20the%20Hydrogen%20Abstraction%20Reaction%20of%20the%20OH%20Radical%20with%20CH3CHF2%20(HFC152-a):%E2%80%89%20A%20Dual%20Level%20Direct%20Density%20Functional%20Theory%20Dynamics%20Study&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Taghikhani,%20Mahdi&rft.date=2005-09-15&rft.volume=109&rft.issue=36&rft.spage=8158&rft.epage=8167&rft.pages=8158-8167&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/jp0524173&rft_dat=%3Cproquest_pubme%3E70173723%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70173723&rft_id=info:pmid/16834202&rfr_iscdi=true