Adsorption of Atomic Oxygen and Nitrogen at β-Cristobalite (100):  A Density Functional Theory Study

The adsorption of atomic oxygen and nitrogen on the β-cristobalite (100) surface is investigated from first principles density functional calculations within the generalized gradient approximation. A periodic SiO2 slab model (6 layers relaxing 4 or 6) ended with a layer of Si or O atoms is employed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2005-08, Vol.109 (31), p.14954-14964
Hauptverfasser: Arasa, C, Gamallo, P, Sayós, R
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14964
container_issue 31
container_start_page 14954
container_title The journal of physical chemistry. B
container_volume 109
creator Arasa, C
Gamallo, P
Sayós, R
description The adsorption of atomic oxygen and nitrogen on the β-cristobalite (100) surface is investigated from first principles density functional calculations within the generalized gradient approximation. A periodic SiO2 slab model (6 layers relaxing 4 or 6) ended with a layer of Si or O atoms is employed throughout the study. Several adsorption minima and diffusion transition states have been characterized for the two lowest spin states of both systems. A strong chemisorption is found for either O or N in several sites with both slab endings (e.g., it is found an average adsorption energy of 5.89 eV for O (singlet state) and 4.12 eV for N (doublet state) over the Si face). The approach of O or N on top O gives place to the O2 and NO abstraction reactions without energy barriers. Atomic sticking coefficients and desorption rate constants have been estimated (300−1900 K) by using the standard transition state theory. The high adsorption energies found for O and N over silica point out that the atomic recombination processes (i.e., Eley−Rideal and Langmuir−Hinshelwood mechanisms) will play a more important role in the atomic detachment processes than the thermal desorption processes. Furthermore, the different behavior observed for the O and N thermal desorption processes suggests that the published kinetic models for atomic O and N recombination reactions on SiO2 surfaces, based on low adsorption energies (e.g., 3.5 eV for both O and N), should probably be revised.
doi_str_mv 10.1021/jp044064y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70172400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70172400</sourcerecordid><originalsourceid>FETCH-LOGICAL-a386t-bafcfe1e06e816d85b80a7c7275bda05c493ba3bcab808228bc6548385ab37c83</originalsourceid><addsrcrecordid>eNptkM1O3DAQx60KVD7aQ1-g8oUKDqHjJP5YbqstC0grqGB7tmzHodlm48V2JHLjyuvwIDwET4Lpruilh9HMaH76j_RD6AuBYwI5-b5YQVkCK4cPaJfQHLJUfGszMwJsB-2FsADIaS7YR7RDmEjTqNxFt-MqOL-Kjeuwq_E4umVj8NX9cGs7rLoKXzbRu79LxM9P2cQ3ITqt2iZafEgAjk5eHh7xGP-wXWjigKd9Z97SVIvnv63zA76JfTV8Qtu1aoP9vOn76Nf0dD45z2ZXZxeT8SxThWAx06o2tSUWmBWEVYJqAYobnnOqKwXUlKNCq0IblQ4iz4U2jJaiEFTpghtR7KNv69yVd3e9DVEum2Bs26rOuj5IDoTnJUACj9ag8S4Eb2u58s1S-UESkG9W5bvVxH7dhPZ6aat_5EZjArI1kOTY-_e78n8k4wWncv7zRl7PiuvRlJxJmviDNa9MkAvX-6Qr_OfxK5Ngjnc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70172400</pqid></control><display><type>article</type><title>Adsorption of Atomic Oxygen and Nitrogen at β-Cristobalite (100):  A Density Functional Theory Study</title><source>ACS Publications</source><creator>Arasa, C ; Gamallo, P ; Sayós, R</creator><creatorcontrib>Arasa, C ; Gamallo, P ; Sayós, R</creatorcontrib><description>The adsorption of atomic oxygen and nitrogen on the β-cristobalite (100) surface is investigated from first principles density functional calculations within the generalized gradient approximation. A periodic SiO2 slab model (6 layers relaxing 4 or 6) ended with a layer of Si or O atoms is employed throughout the study. Several adsorption minima and diffusion transition states have been characterized for the two lowest spin states of both systems. A strong chemisorption is found for either O or N in several sites with both slab endings (e.g., it is found an average adsorption energy of 5.89 eV for O (singlet state) and 4.12 eV for N (doublet state) over the Si face). The approach of O or N on top O gives place to the O2 and NO abstraction reactions without energy barriers. Atomic sticking coefficients and desorption rate constants have been estimated (300−1900 K) by using the standard transition state theory. The high adsorption energies found for O and N over silica point out that the atomic recombination processes (i.e., Eley−Rideal and Langmuir−Hinshelwood mechanisms) will play a more important role in the atomic detachment processes than the thermal desorption processes. Furthermore, the different behavior observed for the O and N thermal desorption processes suggests that the published kinetic models for atomic O and N recombination reactions on SiO2 surfaces, based on low adsorption energies (e.g., 3.5 eV for both O and N), should probably be revised.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/jp044064y</identifier><identifier>PMID: 16852894</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry. B, 2005-08, Vol.109 (31), p.14954-14964</ispartof><rights>Copyright © 2005 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a386t-bafcfe1e06e816d85b80a7c7275bda05c493ba3bcab808228bc6548385ab37c83</citedby><cites>FETCH-LOGICAL-a386t-bafcfe1e06e816d85b80a7c7275bda05c493ba3bcab808228bc6548385ab37c83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp044064y$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp044064y$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16852894$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Arasa, C</creatorcontrib><creatorcontrib>Gamallo, P</creatorcontrib><creatorcontrib>Sayós, R</creatorcontrib><title>Adsorption of Atomic Oxygen and Nitrogen at β-Cristobalite (100):  A Density Functional Theory Study</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>The adsorption of atomic oxygen and nitrogen on the β-cristobalite (100) surface is investigated from first principles density functional calculations within the generalized gradient approximation. A periodic SiO2 slab model (6 layers relaxing 4 or 6) ended with a layer of Si or O atoms is employed throughout the study. Several adsorption minima and diffusion transition states have been characterized for the two lowest spin states of both systems. A strong chemisorption is found for either O or N in several sites with both slab endings (e.g., it is found an average adsorption energy of 5.89 eV for O (singlet state) and 4.12 eV for N (doublet state) over the Si face). The approach of O or N on top O gives place to the O2 and NO abstraction reactions without energy barriers. Atomic sticking coefficients and desorption rate constants have been estimated (300−1900 K) by using the standard transition state theory. The high adsorption energies found for O and N over silica point out that the atomic recombination processes (i.e., Eley−Rideal and Langmuir−Hinshelwood mechanisms) will play a more important role in the atomic detachment processes than the thermal desorption processes. Furthermore, the different behavior observed for the O and N thermal desorption processes suggests that the published kinetic models for atomic O and N recombination reactions on SiO2 surfaces, based on low adsorption energies (e.g., 3.5 eV for both O and N), should probably be revised.</description><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNptkM1O3DAQx60KVD7aQ1-g8oUKDqHjJP5YbqstC0grqGB7tmzHodlm48V2JHLjyuvwIDwET4Lpruilh9HMaH76j_RD6AuBYwI5-b5YQVkCK4cPaJfQHLJUfGszMwJsB-2FsADIaS7YR7RDmEjTqNxFt-MqOL-Kjeuwq_E4umVj8NX9cGs7rLoKXzbRu79LxM9P2cQ3ITqt2iZafEgAjk5eHh7xGP-wXWjigKd9Z97SVIvnv63zA76JfTV8Qtu1aoP9vOn76Nf0dD45z2ZXZxeT8SxThWAx06o2tSUWmBWEVYJqAYobnnOqKwXUlKNCq0IblQ4iz4U2jJaiEFTpghtR7KNv69yVd3e9DVEum2Bs26rOuj5IDoTnJUACj9ag8S4Eb2u58s1S-UESkG9W5bvVxH7dhPZ6aat_5EZjArI1kOTY-_e78n8k4wWncv7zRl7PiuvRlJxJmviDNa9MkAvX-6Qr_OfxK5Ngjnc</recordid><startdate>20050811</startdate><enddate>20050811</enddate><creator>Arasa, C</creator><creator>Gamallo, P</creator><creator>Sayós, R</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20050811</creationdate><title>Adsorption of Atomic Oxygen and Nitrogen at β-Cristobalite (100):  A Density Functional Theory Study</title><author>Arasa, C ; Gamallo, P ; Sayós, R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a386t-bafcfe1e06e816d85b80a7c7275bda05c493ba3bcab808228bc6548385ab37c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arasa, C</creatorcontrib><creatorcontrib>Gamallo, P</creatorcontrib><creatorcontrib>Sayós, R</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arasa, C</au><au>Gamallo, P</au><au>Sayós, R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adsorption of Atomic Oxygen and Nitrogen at β-Cristobalite (100):  A Density Functional Theory Study</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2005-08-11</date><risdate>2005</risdate><volume>109</volume><issue>31</issue><spage>14954</spage><epage>14964</epage><pages>14954-14964</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>The adsorption of atomic oxygen and nitrogen on the β-cristobalite (100) surface is investigated from first principles density functional calculations within the generalized gradient approximation. A periodic SiO2 slab model (6 layers relaxing 4 or 6) ended with a layer of Si or O atoms is employed throughout the study. Several adsorption minima and diffusion transition states have been characterized for the two lowest spin states of both systems. A strong chemisorption is found for either O or N in several sites with both slab endings (e.g., it is found an average adsorption energy of 5.89 eV for O (singlet state) and 4.12 eV for N (doublet state) over the Si face). The approach of O or N on top O gives place to the O2 and NO abstraction reactions without energy barriers. Atomic sticking coefficients and desorption rate constants have been estimated (300−1900 K) by using the standard transition state theory. The high adsorption energies found for O and N over silica point out that the atomic recombination processes (i.e., Eley−Rideal and Langmuir−Hinshelwood mechanisms) will play a more important role in the atomic detachment processes than the thermal desorption processes. Furthermore, the different behavior observed for the O and N thermal desorption processes suggests that the published kinetic models for atomic O and N recombination reactions on SiO2 surfaces, based on low adsorption energies (e.g., 3.5 eV for both O and N), should probably be revised.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>16852894</pmid><doi>10.1021/jp044064y</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2005-08, Vol.109 (31), p.14954-14964
issn 1520-6106
1520-5207
language eng
recordid cdi_proquest_miscellaneous_70172400
source ACS Publications
title Adsorption of Atomic Oxygen and Nitrogen at β-Cristobalite (100):  A Density Functional Theory Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A09%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adsorption%20of%20Atomic%20Oxygen%20and%20Nitrogen%20at%20%CE%B2-Cristobalite%20(100):%E2%80%89%20A%20Density%20Functional%20Theory%20Study&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Arasa,%20C&rft.date=2005-08-11&rft.volume=109&rft.issue=31&rft.spage=14954&rft.epage=14964&rft.pages=14954-14964&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/jp044064y&rft_dat=%3Cproquest_cross%3E70172400%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70172400&rft_id=info:pmid/16852894&rfr_iscdi=true