Hydrothermal Carbon−Carbon Bond Formation and Disproportionations of C1 Aldehydes:  Formaldehyde and Formic Acid

Hydrothermal reaction pathways and kinetics of C1 (carbon-one) aldehydes, formaldehyde (HCHO) and formic acid (HCOOH = HOCHO), are studied at 225 °C without and with hydrochloric acid (HCl) up to 0.6 M (mol dm-3). Reactions unveiled are the following:  (i) the self-disproportionation forming methano...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2005-07, Vol.109 (29), p.6610-6619
Hauptverfasser: Morooka, Saiko, Wakai, Chihiro, Matubayasi, Nobuyuki, Nakahara, Masaru
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6619
container_issue 29
container_start_page 6610
container_title The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory
container_volume 109
creator Morooka, Saiko
Wakai, Chihiro
Matubayasi, Nobuyuki
Nakahara, Masaru
description Hydrothermal reaction pathways and kinetics of C1 (carbon-one) aldehydes, formaldehyde (HCHO) and formic acid (HCOOH = HOCHO), are studied at 225 °C without and with hydrochloric acid (HCl) up to 0.6 M (mol dm-3). Reactions unveiled are the following:  (i) the self-disproportionation forming methanol and formic acid, a redox reaction between two formaldehydes, (ii) the cross-disproportionation forming methanol and carbonic acid, a redox reaction between formaldehyde and formic acid, and (iii) the acid-catalyzed C−C bond formation producing glycolic acid (HOCH2COOH) as a precursor of the simplest amino acid, glycine. Reaction iii is a hydrothermally induced chemical evolution step from C1 aldehydes, formaldehyde and formic acid. Disproportionations i and ii are found to proceed even without base catalysts unlike the classical Cannizzaro reaction. Acid catalyzes the self-disproportionation (i) and the C−C bond formation (iii), but retards the cross-disproportionation (ii). The rate constants of noncatalyzed and acid/base-catalyzed paths for reactions i, ii, and iii are given additively as 2 × 10-4 + (2 × 10-3)[H+], 10-4 + 103[OH-], and (2 × 10-3)[H+] M-1 s-1, respectively; the concentrations of proton [H+] and hydroxide ion [OH-] are expressed in M. The rate constant of the noncatalytic (neutral) cross-disproportionation is 1 order of magnitude larger than that of the self-disproportionation. The reaction pathways are controlled on the basis of the kinetic analysis to make the glycolic acid and methanol productions dominant by tuning the concentrations of formaldehyde, formic acid, and HCl. The conversion to glycolic acid reaches ∼90% when formaldehyde, HCl, and formic acid are mixed in the ratio of 1:2:17. The conversion of formaldehyde to methanol reaches ∼80% when formic acid is added in excess to formaldehyde.
doi_str_mv 10.1021/jp052153k
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70172304</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70172304</sourcerecordid><originalsourceid>FETCH-LOGICAL-a417t-35b3ed8549113bef1b32f42fbd79d6d46d7020955fc92cebb07270cbcb9329173</originalsourceid><addsrcrecordid>eNptkM1OGzEUhS3Uiv8FL4BmUyQW017b43HMLg2kqUACBAiJjeW_ERMmcWpPJLJjSbd9xDxJHSaCDSvfc-5377UOQgcYvmMg-Md4BoxgRp820DZmBPKV-pJq6ImclVRsoZ0YxwCAKSk20RYue7QADNuoHS1s8O2jCxPVZAMVtJ8uX_91RfbTT2029KnX1kmqpE7rOAt-5sPKebNj5qtsgLN-Y93jwrp4snz5202tnbfBlVGbrG9qu4e-VqqJbn_97qK74dntYJRfXP76Pehf5KrAvM0p09TZHisExlS7CmtKqoJU2nJhS1uUlgMBwVhlBDFOa-CEg9FGC0oE5nQXHXV704__zF1s5aSOxjWNmjo_j5ID5oRCkcDjDjTBxxhcJWehnqiwkBjkKmL5HnFiD9dL53ri7Ae5zjQBeQfUsXXP730VnmTJKWfy9upGDu-vzx9EMZLnif_W8cpEOfbzME2ZfHL4P6tZlCs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70172304</pqid></control><display><type>article</type><title>Hydrothermal Carbon−Carbon Bond Formation and Disproportionations of C1 Aldehydes:  Formaldehyde and Formic Acid</title><source>ACS Publications</source><creator>Morooka, Saiko ; Wakai, Chihiro ; Matubayasi, Nobuyuki ; Nakahara, Masaru</creator><creatorcontrib>Morooka, Saiko ; Wakai, Chihiro ; Matubayasi, Nobuyuki ; Nakahara, Masaru</creatorcontrib><description>Hydrothermal reaction pathways and kinetics of C1 (carbon-one) aldehydes, formaldehyde (HCHO) and formic acid (HCOOH = HOCHO), are studied at 225 °C without and with hydrochloric acid (HCl) up to 0.6 M (mol dm-3). Reactions unveiled are the following:  (i) the self-disproportionation forming methanol and formic acid, a redox reaction between two formaldehydes, (ii) the cross-disproportionation forming methanol and carbonic acid, a redox reaction between formaldehyde and formic acid, and (iii) the acid-catalyzed C−C bond formation producing glycolic acid (HOCH2COOH) as a precursor of the simplest amino acid, glycine. Reaction iii is a hydrothermally induced chemical evolution step from C1 aldehydes, formaldehyde and formic acid. Disproportionations i and ii are found to proceed even without base catalysts unlike the classical Cannizzaro reaction. Acid catalyzes the self-disproportionation (i) and the C−C bond formation (iii), but retards the cross-disproportionation (ii). The rate constants of noncatalyzed and acid/base-catalyzed paths for reactions i, ii, and iii are given additively as 2 × 10-4 + (2 × 10-3)[H+], 10-4 + 103[OH-], and (2 × 10-3)[H+] M-1 s-1, respectively; the concentrations of proton [H+] and hydroxide ion [OH-] are expressed in M. The rate constant of the noncatalytic (neutral) cross-disproportionation is 1 order of magnitude larger than that of the self-disproportionation. The reaction pathways are controlled on the basis of the kinetic analysis to make the glycolic acid and methanol productions dominant by tuning the concentrations of formaldehyde, formic acid, and HCl. The conversion to glycolic acid reaches ∼90% when formaldehyde, HCl, and formic acid are mixed in the ratio of 1:2:17. The conversion of formaldehyde to methanol reaches ∼80% when formic acid is added in excess to formaldehyde.</description><identifier>ISSN: 1089-5639</identifier><identifier>EISSN: 1520-5215</identifier><identifier>DOI: 10.1021/jp052153k</identifier><identifier>PMID: 16834010</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory, 2005-07, Vol.109 (29), p.6610-6619</ispartof><rights>Copyright © 2005 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a417t-35b3ed8549113bef1b32f42fbd79d6d46d7020955fc92cebb07270cbcb9329173</citedby><cites>FETCH-LOGICAL-a417t-35b3ed8549113bef1b32f42fbd79d6d46d7020955fc92cebb07270cbcb9329173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp052153k$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp052153k$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16834010$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Morooka, Saiko</creatorcontrib><creatorcontrib>Wakai, Chihiro</creatorcontrib><creatorcontrib>Matubayasi, Nobuyuki</creatorcontrib><creatorcontrib>Nakahara, Masaru</creatorcontrib><title>Hydrothermal Carbon−Carbon Bond Formation and Disproportionations of C1 Aldehydes:  Formaldehyde and Formic Acid</title><title>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</title><addtitle>J. Phys. Chem. A</addtitle><description>Hydrothermal reaction pathways and kinetics of C1 (carbon-one) aldehydes, formaldehyde (HCHO) and formic acid (HCOOH = HOCHO), are studied at 225 °C without and with hydrochloric acid (HCl) up to 0.6 M (mol dm-3). Reactions unveiled are the following:  (i) the self-disproportionation forming methanol and formic acid, a redox reaction between two formaldehydes, (ii) the cross-disproportionation forming methanol and carbonic acid, a redox reaction between formaldehyde and formic acid, and (iii) the acid-catalyzed C−C bond formation producing glycolic acid (HOCH2COOH) as a precursor of the simplest amino acid, glycine. Reaction iii is a hydrothermally induced chemical evolution step from C1 aldehydes, formaldehyde and formic acid. Disproportionations i and ii are found to proceed even without base catalysts unlike the classical Cannizzaro reaction. Acid catalyzes the self-disproportionation (i) and the C−C bond formation (iii), but retards the cross-disproportionation (ii). The rate constants of noncatalyzed and acid/base-catalyzed paths for reactions i, ii, and iii are given additively as 2 × 10-4 + (2 × 10-3)[H+], 10-4 + 103[OH-], and (2 × 10-3)[H+] M-1 s-1, respectively; the concentrations of proton [H+] and hydroxide ion [OH-] are expressed in M. The rate constant of the noncatalytic (neutral) cross-disproportionation is 1 order of magnitude larger than that of the self-disproportionation. The reaction pathways are controlled on the basis of the kinetic analysis to make the glycolic acid and methanol productions dominant by tuning the concentrations of formaldehyde, formic acid, and HCl. The conversion to glycolic acid reaches ∼90% when formaldehyde, HCl, and formic acid are mixed in the ratio of 1:2:17. The conversion of formaldehyde to methanol reaches ∼80% when formic acid is added in excess to formaldehyde.</description><issn>1089-5639</issn><issn>1520-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNptkM1OGzEUhS3Uiv8FL4BmUyQW017b43HMLg2kqUACBAiJjeW_ERMmcWpPJLJjSbd9xDxJHSaCDSvfc-5377UOQgcYvmMg-Md4BoxgRp820DZmBPKV-pJq6ImclVRsoZ0YxwCAKSk20RYue7QADNuoHS1s8O2jCxPVZAMVtJ8uX_91RfbTT2029KnX1kmqpE7rOAt-5sPKebNj5qtsgLN-Y93jwrp4snz5202tnbfBlVGbrG9qu4e-VqqJbn_97qK74dntYJRfXP76Pehf5KrAvM0p09TZHisExlS7CmtKqoJU2nJhS1uUlgMBwVhlBDFOa-CEg9FGC0oE5nQXHXV704__zF1s5aSOxjWNmjo_j5ID5oRCkcDjDjTBxxhcJWehnqiwkBjkKmL5HnFiD9dL53ri7Ae5zjQBeQfUsXXP730VnmTJKWfy9upGDu-vzx9EMZLnif_W8cpEOfbzME2ZfHL4P6tZlCs</recordid><startdate>20050728</startdate><enddate>20050728</enddate><creator>Morooka, Saiko</creator><creator>Wakai, Chihiro</creator><creator>Matubayasi, Nobuyuki</creator><creator>Nakahara, Masaru</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20050728</creationdate><title>Hydrothermal Carbon−Carbon Bond Formation and Disproportionations of C1 Aldehydes:  Formaldehyde and Formic Acid</title><author>Morooka, Saiko ; Wakai, Chihiro ; Matubayasi, Nobuyuki ; Nakahara, Masaru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a417t-35b3ed8549113bef1b32f42fbd79d6d46d7020955fc92cebb07270cbcb9329173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morooka, Saiko</creatorcontrib><creatorcontrib>Wakai, Chihiro</creatorcontrib><creatorcontrib>Matubayasi, Nobuyuki</creatorcontrib><creatorcontrib>Nakahara, Masaru</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morooka, Saiko</au><au>Wakai, Chihiro</au><au>Matubayasi, Nobuyuki</au><au>Nakahara, Masaru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrothermal Carbon−Carbon Bond Formation and Disproportionations of C1 Aldehydes:  Formaldehyde and Formic Acid</atitle><jtitle>The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, &amp; general theory</jtitle><addtitle>J. Phys. Chem. A</addtitle><date>2005-07-28</date><risdate>2005</risdate><volume>109</volume><issue>29</issue><spage>6610</spage><epage>6619</epage><pages>6610-6619</pages><issn>1089-5639</issn><eissn>1520-5215</eissn><abstract>Hydrothermal reaction pathways and kinetics of C1 (carbon-one) aldehydes, formaldehyde (HCHO) and formic acid (HCOOH = HOCHO), are studied at 225 °C without and with hydrochloric acid (HCl) up to 0.6 M (mol dm-3). Reactions unveiled are the following:  (i) the self-disproportionation forming methanol and formic acid, a redox reaction between two formaldehydes, (ii) the cross-disproportionation forming methanol and carbonic acid, a redox reaction between formaldehyde and formic acid, and (iii) the acid-catalyzed C−C bond formation producing glycolic acid (HOCH2COOH) as a precursor of the simplest amino acid, glycine. Reaction iii is a hydrothermally induced chemical evolution step from C1 aldehydes, formaldehyde and formic acid. Disproportionations i and ii are found to proceed even without base catalysts unlike the classical Cannizzaro reaction. Acid catalyzes the self-disproportionation (i) and the C−C bond formation (iii), but retards the cross-disproportionation (ii). The rate constants of noncatalyzed and acid/base-catalyzed paths for reactions i, ii, and iii are given additively as 2 × 10-4 + (2 × 10-3)[H+], 10-4 + 103[OH-], and (2 × 10-3)[H+] M-1 s-1, respectively; the concentrations of proton [H+] and hydroxide ion [OH-] are expressed in M. The rate constant of the noncatalytic (neutral) cross-disproportionation is 1 order of magnitude larger than that of the self-disproportionation. The reaction pathways are controlled on the basis of the kinetic analysis to make the glycolic acid and methanol productions dominant by tuning the concentrations of formaldehyde, formic acid, and HCl. The conversion to glycolic acid reaches ∼90% when formaldehyde, HCl, and formic acid are mixed in the ratio of 1:2:17. The conversion of formaldehyde to methanol reaches ∼80% when formic acid is added in excess to formaldehyde.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>16834010</pmid><doi>10.1021/jp052153k</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1089-5639
ispartof The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory, 2005-07, Vol.109 (29), p.6610-6619
issn 1089-5639
1520-5215
language eng
recordid cdi_proquest_miscellaneous_70172304
source ACS Publications
title Hydrothermal Carbon−Carbon Bond Formation and Disproportionations of C1 Aldehydes:  Formaldehyde and Formic Acid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A09%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrothermal%20Carbon%E2%88%92Carbon%20Bond%20Formation%20and%20Disproportionations%20of%20C1%20Aldehydes:%E2%80%89%20Formaldehyde%20and%20Formic%20Acid&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20A,%20Molecules,%20spectroscopy,%20kinetics,%20environment,%20&%20general%20theory&rft.au=Morooka,%20Saiko&rft.date=2005-07-28&rft.volume=109&rft.issue=29&rft.spage=6610&rft.epage=6619&rft.pages=6610-6619&rft.issn=1089-5639&rft.eissn=1520-5215&rft_id=info:doi/10.1021/jp052153k&rft_dat=%3Cproquest_cross%3E70172304%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70172304&rft_id=info:pmid/16834010&rfr_iscdi=true