Electronic and Vibrational Second-Order Nonlinear Optical Properties of Protein Secondary Structural Motifs

A perturbation theory approach was developed for predicting the vibrational and electronic second-order nonlinear optical (NLO) polarizabilities of materials and macromolecules comprised of many coupled chromophores, with an emphasis on common protein secondary structural motifs. The polarization-de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2005-10, Vol.109 (42), p.20009-20026
Hauptverfasser: Perry, John M, Moad, Andrew J, Begue, Nathan J, Wampler, Ronald D, Simpson, Garth J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20026
container_issue 42
container_start_page 20009
container_title The journal of physical chemistry. B
container_volume 109
creator Perry, John M
Moad, Andrew J
Begue, Nathan J
Wampler, Ronald D
Simpson, Garth J
description A perturbation theory approach was developed for predicting the vibrational and electronic second-order nonlinear optical (NLO) polarizabilities of materials and macromolecules comprised of many coupled chromophores, with an emphasis on common protein secondary structural motifs. The polarization-dependent NLO properties of electronic and vibrational transitions in assemblies of amide chromophores comprising the polypeptide backbones of proteins were found to be accurately recovered in quantum chemical calculations by treating the coupling between adjacent oscillators perturbatively. A novel diagrammatic approach was developed to provide an intuitive visual means of interpreting the results of the perturbation theory calculations. Using this approach, the chiral and achiral polarization-dependent electronic SHG, isotropic SFG, and vibrational SFG nonlinear optical activities of protein structures were predicted and interpreted within the context of simple orientational models.
doi_str_mv 10.1021/jp0506888
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70171604</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70171604</sourcerecordid><originalsourceid>FETCH-LOGICAL-a417t-a93e8bd0815ecb606f219c297a7722652a640bfa71d478692b2079f7337e11183</originalsourceid><addsrcrecordid>eNpt0MtOxCAUBmBiNN4XvoDpRhMXVaAt0KWZeIuXGZ3RLaH0NGHslAo00bcXM41uXBAg5-MAP0JHBJ8TTMnFsscFZkKIDbRLCorTOPjmuGYEsx205_0SY1pQwbbRDmGiyArBdtH7VQs6ONsZnaiuTt5M5VQwtlNtMgdtuzqduhpc8mS71nSgXDLtg9GxPHO2BxcM-MQ2P7sAphsPKfeVzIMbdBhcpI82mMYfoK1GtR4Ox3kfvV5fLSa36cP05m5y-ZCqnPCQqjIDUdVYkAJ0xTBrKCk1LbninFJWUMVyXDWKkzrngpW0ir8tG55lHAghIttHp-u-vbMfA_ggV8ZraFvVgR285JhwwnAe4dkaame9d9DI3plVfLskWP4kK3-TjfZ4bDpUK6j_5BhlBOkaGB_g87eu3LtkPOOFXMzmcvLyPMnf7p_kbfQna6-0l0s7uBi5_-fibxIfjpk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70171604</pqid></control><display><type>article</type><title>Electronic and Vibrational Second-Order Nonlinear Optical Properties of Protein Secondary Structural Motifs</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Perry, John M ; Moad, Andrew J ; Begue, Nathan J ; Wampler, Ronald D ; Simpson, Garth J</creator><creatorcontrib>Perry, John M ; Moad, Andrew J ; Begue, Nathan J ; Wampler, Ronald D ; Simpson, Garth J</creatorcontrib><description>A perturbation theory approach was developed for predicting the vibrational and electronic second-order nonlinear optical (NLO) polarizabilities of materials and macromolecules comprised of many coupled chromophores, with an emphasis on common protein secondary structural motifs. The polarization-dependent NLO properties of electronic and vibrational transitions in assemblies of amide chromophores comprising the polypeptide backbones of proteins were found to be accurately recovered in quantum chemical calculations by treating the coupling between adjacent oscillators perturbatively. A novel diagrammatic approach was developed to provide an intuitive visual means of interpreting the results of the perturbation theory calculations. Using this approach, the chiral and achiral polarization-dependent electronic SHG, isotropic SFG, and vibrational SFG nonlinear optical activities of protein structures were predicted and interpreted within the context of simple orientational models.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/jp0506888</identifier><identifier>PMID: 16853586</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Algorithms ; Amino Acid Sequence ; Electrons ; Isomerism ; Models, Chemical ; Molecular Sequence Data ; Nonlinear Dynamics ; Protein Structure, Secondary ; Proteins - chemistry</subject><ispartof>The journal of physical chemistry. B, 2005-10, Vol.109 (42), p.20009-20026</ispartof><rights>Copyright © 2005 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a417t-a93e8bd0815ecb606f219c297a7722652a640bfa71d478692b2079f7337e11183</citedby><cites>FETCH-LOGICAL-a417t-a93e8bd0815ecb606f219c297a7722652a640bfa71d478692b2079f7337e11183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp0506888$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp0506888$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16853586$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Perry, John M</creatorcontrib><creatorcontrib>Moad, Andrew J</creatorcontrib><creatorcontrib>Begue, Nathan J</creatorcontrib><creatorcontrib>Wampler, Ronald D</creatorcontrib><creatorcontrib>Simpson, Garth J</creatorcontrib><title>Electronic and Vibrational Second-Order Nonlinear Optical Properties of Protein Secondary Structural Motifs</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>A perturbation theory approach was developed for predicting the vibrational and electronic second-order nonlinear optical (NLO) polarizabilities of materials and macromolecules comprised of many coupled chromophores, with an emphasis on common protein secondary structural motifs. The polarization-dependent NLO properties of electronic and vibrational transitions in assemblies of amide chromophores comprising the polypeptide backbones of proteins were found to be accurately recovered in quantum chemical calculations by treating the coupling between adjacent oscillators perturbatively. A novel diagrammatic approach was developed to provide an intuitive visual means of interpreting the results of the perturbation theory calculations. Using this approach, the chiral and achiral polarization-dependent electronic SHG, isotropic SFG, and vibrational SFG nonlinear optical activities of protein structures were predicted and interpreted within the context of simple orientational models.</description><subject>Algorithms</subject><subject>Amino Acid Sequence</subject><subject>Electrons</subject><subject>Isomerism</subject><subject>Models, Chemical</subject><subject>Molecular Sequence Data</subject><subject>Nonlinear Dynamics</subject><subject>Protein Structure, Secondary</subject><subject>Proteins - chemistry</subject><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpt0MtOxCAUBmBiNN4XvoDpRhMXVaAt0KWZeIuXGZ3RLaH0NGHslAo00bcXM41uXBAg5-MAP0JHBJ8TTMnFsscFZkKIDbRLCorTOPjmuGYEsx205_0SY1pQwbbRDmGiyArBdtH7VQs6ONsZnaiuTt5M5VQwtlNtMgdtuzqduhpc8mS71nSgXDLtg9GxPHO2BxcM-MQ2P7sAphsPKfeVzIMbdBhcpI82mMYfoK1GtR4Ox3kfvV5fLSa36cP05m5y-ZCqnPCQqjIDUdVYkAJ0xTBrKCk1LbninFJWUMVyXDWKkzrngpW0ir8tG55lHAghIttHp-u-vbMfA_ggV8ZraFvVgR285JhwwnAe4dkaame9d9DI3plVfLskWP4kK3-TjfZ4bDpUK6j_5BhlBOkaGB_g87eu3LtkPOOFXMzmcvLyPMnf7p_kbfQna6-0l0s7uBi5_-fibxIfjpk</recordid><startdate>20051027</startdate><enddate>20051027</enddate><creator>Perry, John M</creator><creator>Moad, Andrew J</creator><creator>Begue, Nathan J</creator><creator>Wampler, Ronald D</creator><creator>Simpson, Garth J</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20051027</creationdate><title>Electronic and Vibrational Second-Order Nonlinear Optical Properties of Protein Secondary Structural Motifs</title><author>Perry, John M ; Moad, Andrew J ; Begue, Nathan J ; Wampler, Ronald D ; Simpson, Garth J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a417t-a93e8bd0815ecb606f219c297a7722652a640bfa71d478692b2079f7337e11183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Amino Acid Sequence</topic><topic>Electrons</topic><topic>Isomerism</topic><topic>Models, Chemical</topic><topic>Molecular Sequence Data</topic><topic>Nonlinear Dynamics</topic><topic>Protein Structure, Secondary</topic><topic>Proteins - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perry, John M</creatorcontrib><creatorcontrib>Moad, Andrew J</creatorcontrib><creatorcontrib>Begue, Nathan J</creatorcontrib><creatorcontrib>Wampler, Ronald D</creatorcontrib><creatorcontrib>Simpson, Garth J</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perry, John M</au><au>Moad, Andrew J</au><au>Begue, Nathan J</au><au>Wampler, Ronald D</au><au>Simpson, Garth J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electronic and Vibrational Second-Order Nonlinear Optical Properties of Protein Secondary Structural Motifs</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2005-10-27</date><risdate>2005</risdate><volume>109</volume><issue>42</issue><spage>20009</spage><epage>20026</epage><pages>20009-20026</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>A perturbation theory approach was developed for predicting the vibrational and electronic second-order nonlinear optical (NLO) polarizabilities of materials and macromolecules comprised of many coupled chromophores, with an emphasis on common protein secondary structural motifs. The polarization-dependent NLO properties of electronic and vibrational transitions in assemblies of amide chromophores comprising the polypeptide backbones of proteins were found to be accurately recovered in quantum chemical calculations by treating the coupling between adjacent oscillators perturbatively. A novel diagrammatic approach was developed to provide an intuitive visual means of interpreting the results of the perturbation theory calculations. Using this approach, the chiral and achiral polarization-dependent electronic SHG, isotropic SFG, and vibrational SFG nonlinear optical activities of protein structures were predicted and interpreted within the context of simple orientational models.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>16853586</pmid><doi>10.1021/jp0506888</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2005-10, Vol.109 (42), p.20009-20026
issn 1520-6106
1520-5207
language eng
recordid cdi_proquest_miscellaneous_70171604
source MEDLINE; American Chemical Society Journals
subjects Algorithms
Amino Acid Sequence
Electrons
Isomerism
Models, Chemical
Molecular Sequence Data
Nonlinear Dynamics
Protein Structure, Secondary
Proteins - chemistry
title Electronic and Vibrational Second-Order Nonlinear Optical Properties of Protein Secondary Structural Motifs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T12%3A51%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electronic%20and%20Vibrational%20Second-Order%20Nonlinear%20Optical%20Properties%20of%20Protein%20Secondary%20Structural%20Motifs&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Perry,%20John%20M&rft.date=2005-10-27&rft.volume=109&rft.issue=42&rft.spage=20009&rft.epage=20026&rft.pages=20009-20026&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/jp0506888&rft_dat=%3Cproquest_cross%3E70171604%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70171604&rft_id=info:pmid/16853586&rfr_iscdi=true