elementary metabolite unit (EMU) based method of isotopically nonstationary flux analysis

Nonstationary metabolic flux analysis (NMFA) is at present a very computationally intensive exercise, especially for large reaction networks. We applied elementary metabolite unit (EMU) theory to NMFA, dramatically reducing computational difficulty. We also introduced block decoupling, a new method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology and bioengineering 2008-02, Vol.99 (3), p.686-699
Hauptverfasser: Young, Jamey D, Walther, Jason L, Antoniewicz, Maciek R, Yoo, Hyuntae, Stephanopoulos, Gregory
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 699
container_issue 3
container_start_page 686
container_title Biotechnology and bioengineering
container_volume 99
creator Young, Jamey D
Walther, Jason L
Antoniewicz, Maciek R
Yoo, Hyuntae
Stephanopoulos, Gregory
description Nonstationary metabolic flux analysis (NMFA) is at present a very computationally intensive exercise, especially for large reaction networks. We applied elementary metabolite unit (EMU) theory to NMFA, dramatically reducing computational difficulty. We also introduced block decoupling, a new method that systematically and comprehensively divides EMU systems of equations into smaller subproblems to further reduce computational difficulty. These improvements led to a 5000-fold reduction in simulation times, enabling an entirely new and more complicated set of problems to be analyzed with NMFA. We simulated a series of nonstationary and stationary GC/MS measurements for a large E. coli network that was then used to estimate parameters and their associated confidence intervals. We found that fluxes could be successfully estimated using only nonstationary labeling data and external flux measurements. Addition of near-stationary and stationary time points increased the precision of most parameters. Contrary to prior reports, the precision of nonstationary estimates proved to be comparable to the precision of estimates based solely on stationary data. Finally, we applied EMU-based NMFA to experimental nonstationary measurements taken from brown adipocytes and successfully estimated fluxes and some metabolite concentrations. By using NFMA instead of traditional MFA, the experiment required only 6 h instead of 50 (the time necessary for most metabolite labeling to reach 99% of isotopic steady state). Biotechnol. Bioeng. 2008;99: 686-699. © 2007 Wiley Periodicals, Inc.
doi_str_mv 10.1002/bit.21632
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70169655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1415979301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5702-b5bed4012fa3a49b9a6697b503a47be48615000d7cddb553c8c6e47d3c4ffd5d3</originalsourceid><addsrcrecordid>eNqF0U1v1DAQBuAIgei2cOAPQIRURA9px3Zsx0dY-oUWONAV4mTZsQNunXiJHdH993jZhUpIqKfIyjPjGb9F8QzBMQLAJ9qlY4wYwQ-KGQLBK8ACHhYzAGAVoQLvFfsxXucjbxh7XOwhzhsOiMyKr9bb3g5Jjeuyt0np4F2y5TS4VL4-_bA8KrWK1mz-fQ-mDF3pYkhh5Vrl_bocwhCTSi4Mmwadn25LNSi_ji4-KR51ykf7dPc9KJZnp1fzi2rx6fxy_mZRtZQDrjTV1tSAcKeIqoUWijHBNYV84trWDUM0D254a4ymlLRNy2zNDWnrrjPUkIPi1bbvagw_JhuT7F1srfdqsGGKMu_JBMuV90GCCAfSkHshhoZnChm-_Adeh2nM-2eTm1HRMJHR0Ra1Y4hxtJ1cja7PzyURyE18Mscnf8eX7fNdw0n31tzJXV4ZHO6AijmBblRD6-KdE0LUgDfuZOt-Om_X_79Rvr28-nN1ta1wMdnbvxVqvJEsb0vll4_nck4WZ_CevZMX2b_Y-k4Fqb6NeYrlZ5xnBGhqBJyQX4CPyHs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213759869</pqid></control><display><type>article</type><title>elementary metabolite unit (EMU) based method of isotopically nonstationary flux analysis</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Young, Jamey D ; Walther, Jason L ; Antoniewicz, Maciek R ; Yoo, Hyuntae ; Stephanopoulos, Gregory</creator><creatorcontrib>Young, Jamey D ; Walther, Jason L ; Antoniewicz, Maciek R ; Yoo, Hyuntae ; Stephanopoulos, Gregory</creatorcontrib><description>Nonstationary metabolic flux analysis (NMFA) is at present a very computationally intensive exercise, especially for large reaction networks. We applied elementary metabolite unit (EMU) theory to NMFA, dramatically reducing computational difficulty. We also introduced block decoupling, a new method that systematically and comprehensively divides EMU systems of equations into smaller subproblems to further reduce computational difficulty. These improvements led to a 5000-fold reduction in simulation times, enabling an entirely new and more complicated set of problems to be analyzed with NMFA. We simulated a series of nonstationary and stationary GC/MS measurements for a large E. coli network that was then used to estimate parameters and their associated confidence intervals. We found that fluxes could be successfully estimated using only nonstationary labeling data and external flux measurements. Addition of near-stationary and stationary time points increased the precision of most parameters. Contrary to prior reports, the precision of nonstationary estimates proved to be comparable to the precision of estimates based solely on stationary data. Finally, we applied EMU-based NMFA to experimental nonstationary measurements taken from brown adipocytes and successfully estimated fluxes and some metabolite concentrations. By using NFMA instead of traditional MFA, the experiment required only 6 h instead of 50 (the time necessary for most metabolite labeling to reach 99% of isotopic steady state). Biotechnol. Bioeng. 2008;99: 686-699. © 2007 Wiley Periodicals, Inc.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.21632</identifier><identifier>PMID: 17787013</identifier><identifier>CODEN: BIBIAU</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Algorithms ; Biological and medical sciences ; Biotechnology ; brown adipocytes ; Cells ; Chromatography ; Computer Simulation ; E coli ; elementary metabolite units ; Escherichia coli ; Escherichia coli - metabolism ; Escherichia coli Proteins - metabolism ; Estimates ; Fundamental and applied biological sciences. Psychology ; Gas Chromatography-Mass Spectrometry - methods ; Gene Expression Profiling - methods ; Isotope Labeling - methods ; isotopically nonstationary ; Mass spectrometry ; metabolic engineering ; metabolic flux analysis ; Models, Biological ; Precision ; Signal Transduction - physiology</subject><ispartof>Biotechnology and bioengineering, 2008-02, Vol.99 (3), p.686-699</ispartof><rights>Copyright © 2007 Wiley Periodicals, Inc.</rights><rights>2008 INIST-CNRS</rights><rights>(c) 2007 Wiley Periodicals, Inc.</rights><rights>Copyright John Wiley and Sons, Limited Feb 15, 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5702-b5bed4012fa3a49b9a6697b503a47be48615000d7cddb553c8c6e47d3c4ffd5d3</citedby><cites>FETCH-LOGICAL-c5702-b5bed4012fa3a49b9a6697b503a47be48615000d7cddb553c8c6e47d3c4ffd5d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbit.21632$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbit.21632$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19994023$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17787013$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Young, Jamey D</creatorcontrib><creatorcontrib>Walther, Jason L</creatorcontrib><creatorcontrib>Antoniewicz, Maciek R</creatorcontrib><creatorcontrib>Yoo, Hyuntae</creatorcontrib><creatorcontrib>Stephanopoulos, Gregory</creatorcontrib><title>elementary metabolite unit (EMU) based method of isotopically nonstationary flux analysis</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol. Bioeng</addtitle><description>Nonstationary metabolic flux analysis (NMFA) is at present a very computationally intensive exercise, especially for large reaction networks. We applied elementary metabolite unit (EMU) theory to NMFA, dramatically reducing computational difficulty. We also introduced block decoupling, a new method that systematically and comprehensively divides EMU systems of equations into smaller subproblems to further reduce computational difficulty. These improvements led to a 5000-fold reduction in simulation times, enabling an entirely new and more complicated set of problems to be analyzed with NMFA. We simulated a series of nonstationary and stationary GC/MS measurements for a large E. coli network that was then used to estimate parameters and their associated confidence intervals. We found that fluxes could be successfully estimated using only nonstationary labeling data and external flux measurements. Addition of near-stationary and stationary time points increased the precision of most parameters. Contrary to prior reports, the precision of nonstationary estimates proved to be comparable to the precision of estimates based solely on stationary data. Finally, we applied EMU-based NMFA to experimental nonstationary measurements taken from brown adipocytes and successfully estimated fluxes and some metabolite concentrations. By using NFMA instead of traditional MFA, the experiment required only 6 h instead of 50 (the time necessary for most metabolite labeling to reach 99% of isotopic steady state). Biotechnol. Bioeng. 2008;99: 686-699. © 2007 Wiley Periodicals, Inc.</description><subject>Algorithms</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>brown adipocytes</subject><subject>Cells</subject><subject>Chromatography</subject><subject>Computer Simulation</subject><subject>E coli</subject><subject>elementary metabolite units</subject><subject>Escherichia coli</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Estimates</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gas Chromatography-Mass Spectrometry - methods</subject><subject>Gene Expression Profiling - methods</subject><subject>Isotope Labeling - methods</subject><subject>isotopically nonstationary</subject><subject>Mass spectrometry</subject><subject>metabolic engineering</subject><subject>metabolic flux analysis</subject><subject>Models, Biological</subject><subject>Precision</subject><subject>Signal Transduction - physiology</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0U1v1DAQBuAIgei2cOAPQIRURA9px3Zsx0dY-oUWONAV4mTZsQNunXiJHdH993jZhUpIqKfIyjPjGb9F8QzBMQLAJ9qlY4wYwQ-KGQLBK8ACHhYzAGAVoQLvFfsxXucjbxh7XOwhzhsOiMyKr9bb3g5Jjeuyt0np4F2y5TS4VL4-_bA8KrWK1mz-fQ-mDF3pYkhh5Vrl_bocwhCTSi4Mmwadn25LNSi_ji4-KR51ykf7dPc9KJZnp1fzi2rx6fxy_mZRtZQDrjTV1tSAcKeIqoUWijHBNYV84trWDUM0D254a4ymlLRNy2zNDWnrrjPUkIPi1bbvagw_JhuT7F1srfdqsGGKMu_JBMuV90GCCAfSkHshhoZnChm-_Adeh2nM-2eTm1HRMJHR0Ra1Y4hxtJ1cja7PzyURyE18Mscnf8eX7fNdw0n31tzJXV4ZHO6AijmBblRD6-KdE0LUgDfuZOt-Om_X_79Rvr28-nN1ta1wMdnbvxVqvJEsb0vll4_nck4WZ_CevZMX2b_Y-k4Fqb6NeYrlZ5xnBGhqBJyQX4CPyHs</recordid><startdate>20080215</startdate><enddate>20080215</enddate><creator>Young, Jamey D</creator><creator>Walther, Jason L</creator><creator>Antoniewicz, Maciek R</creator><creator>Yoo, Hyuntae</creator><creator>Stephanopoulos, Gregory</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20080215</creationdate><title>elementary metabolite unit (EMU) based method of isotopically nonstationary flux analysis</title><author>Young, Jamey D ; Walther, Jason L ; Antoniewicz, Maciek R ; Yoo, Hyuntae ; Stephanopoulos, Gregory</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5702-b5bed4012fa3a49b9a6697b503a47be48615000d7cddb553c8c6e47d3c4ffd5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>brown adipocytes</topic><topic>Cells</topic><topic>Chromatography</topic><topic>Computer Simulation</topic><topic>E coli</topic><topic>elementary metabolite units</topic><topic>Escherichia coli</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Estimates</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gas Chromatography-Mass Spectrometry - methods</topic><topic>Gene Expression Profiling - methods</topic><topic>Isotope Labeling - methods</topic><topic>isotopically nonstationary</topic><topic>Mass spectrometry</topic><topic>metabolic engineering</topic><topic>metabolic flux analysis</topic><topic>Models, Biological</topic><topic>Precision</topic><topic>Signal Transduction - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Young, Jamey D</creatorcontrib><creatorcontrib>Walther, Jason L</creatorcontrib><creatorcontrib>Antoniewicz, Maciek R</creatorcontrib><creatorcontrib>Yoo, Hyuntae</creatorcontrib><creatorcontrib>Stephanopoulos, Gregory</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Young, Jamey D</au><au>Walther, Jason L</au><au>Antoniewicz, Maciek R</au><au>Yoo, Hyuntae</au><au>Stephanopoulos, Gregory</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>elementary metabolite unit (EMU) based method of isotopically nonstationary flux analysis</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol. Bioeng</addtitle><date>2008-02-15</date><risdate>2008</risdate><volume>99</volume><issue>3</issue><spage>686</spage><epage>699</epage><pages>686-699</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><coden>BIBIAU</coden><abstract>Nonstationary metabolic flux analysis (NMFA) is at present a very computationally intensive exercise, especially for large reaction networks. We applied elementary metabolite unit (EMU) theory to NMFA, dramatically reducing computational difficulty. We also introduced block decoupling, a new method that systematically and comprehensively divides EMU systems of equations into smaller subproblems to further reduce computational difficulty. These improvements led to a 5000-fold reduction in simulation times, enabling an entirely new and more complicated set of problems to be analyzed with NMFA. We simulated a series of nonstationary and stationary GC/MS measurements for a large E. coli network that was then used to estimate parameters and their associated confidence intervals. We found that fluxes could be successfully estimated using only nonstationary labeling data and external flux measurements. Addition of near-stationary and stationary time points increased the precision of most parameters. Contrary to prior reports, the precision of nonstationary estimates proved to be comparable to the precision of estimates based solely on stationary data. Finally, we applied EMU-based NMFA to experimental nonstationary measurements taken from brown adipocytes and successfully estimated fluxes and some metabolite concentrations. By using NFMA instead of traditional MFA, the experiment required only 6 h instead of 50 (the time necessary for most metabolite labeling to reach 99% of isotopic steady state). Biotechnol. Bioeng. 2008;99: 686-699. © 2007 Wiley Periodicals, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>17787013</pmid><doi>10.1002/bit.21632</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-3592
ispartof Biotechnology and bioengineering, 2008-02, Vol.99 (3), p.686-699
issn 0006-3592
1097-0290
language eng
recordid cdi_proquest_miscellaneous_70169655
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Biological and medical sciences
Biotechnology
brown adipocytes
Cells
Chromatography
Computer Simulation
E coli
elementary metabolite units
Escherichia coli
Escherichia coli - metabolism
Escherichia coli Proteins - metabolism
Estimates
Fundamental and applied biological sciences. Psychology
Gas Chromatography-Mass Spectrometry - methods
Gene Expression Profiling - methods
Isotope Labeling - methods
isotopically nonstationary
Mass spectrometry
metabolic engineering
metabolic flux analysis
Models, Biological
Precision
Signal Transduction - physiology
title elementary metabolite unit (EMU) based method of isotopically nonstationary flux analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T21%3A19%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=elementary%20metabolite%20unit%20(EMU)%20based%20method%20of%20isotopically%20nonstationary%20flux%20analysis&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Young,%20Jamey%20D&rft.date=2008-02-15&rft.volume=99&rft.issue=3&rft.spage=686&rft.epage=699&rft.pages=686-699&rft.issn=0006-3592&rft.eissn=1097-0290&rft.coden=BIBIAU&rft_id=info:doi/10.1002/bit.21632&rft_dat=%3Cproquest_cross%3E1415979301%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213759869&rft_id=info:pmid/17787013&rfr_iscdi=true