elementary metabolite unit (EMU) based method of isotopically nonstationary flux analysis
Nonstationary metabolic flux analysis (NMFA) is at present a very computationally intensive exercise, especially for large reaction networks. We applied elementary metabolite unit (EMU) theory to NMFA, dramatically reducing computational difficulty. We also introduced block decoupling, a new method...
Gespeichert in:
Veröffentlicht in: | Biotechnology and bioengineering 2008-02, Vol.99 (3), p.686-699 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 699 |
---|---|
container_issue | 3 |
container_start_page | 686 |
container_title | Biotechnology and bioengineering |
container_volume | 99 |
creator | Young, Jamey D Walther, Jason L Antoniewicz, Maciek R Yoo, Hyuntae Stephanopoulos, Gregory |
description | Nonstationary metabolic flux analysis (NMFA) is at present a very computationally intensive exercise, especially for large reaction networks. We applied elementary metabolite unit (EMU) theory to NMFA, dramatically reducing computational difficulty. We also introduced block decoupling, a new method that systematically and comprehensively divides EMU systems of equations into smaller subproblems to further reduce computational difficulty. These improvements led to a 5000-fold reduction in simulation times, enabling an entirely new and more complicated set of problems to be analyzed with NMFA. We simulated a series of nonstationary and stationary GC/MS measurements for a large E. coli network that was then used to estimate parameters and their associated confidence intervals. We found that fluxes could be successfully estimated using only nonstationary labeling data and external flux measurements. Addition of near-stationary and stationary time points increased the precision of most parameters. Contrary to prior reports, the precision of nonstationary estimates proved to be comparable to the precision of estimates based solely on stationary data. Finally, we applied EMU-based NMFA to experimental nonstationary measurements taken from brown adipocytes and successfully estimated fluxes and some metabolite concentrations. By using NFMA instead of traditional MFA, the experiment required only 6 h instead of 50 (the time necessary for most metabolite labeling to reach 99% of isotopic steady state). Biotechnol. Bioeng. 2008;99: 686-699. © 2007 Wiley Periodicals, Inc. |
doi_str_mv | 10.1002/bit.21632 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70169655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1415979301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5702-b5bed4012fa3a49b9a6697b503a47be48615000d7cddb553c8c6e47d3c4ffd5d3</originalsourceid><addsrcrecordid>eNqF0U1v1DAQBuAIgei2cOAPQIRURA9px3Zsx0dY-oUWONAV4mTZsQNunXiJHdH993jZhUpIqKfIyjPjGb9F8QzBMQLAJ9qlY4wYwQ-KGQLBK8ACHhYzAGAVoQLvFfsxXucjbxh7XOwhzhsOiMyKr9bb3g5Jjeuyt0np4F2y5TS4VL4-_bA8KrWK1mz-fQ-mDF3pYkhh5Vrl_bocwhCTSi4Mmwadn25LNSi_ji4-KR51ykf7dPc9KJZnp1fzi2rx6fxy_mZRtZQDrjTV1tSAcKeIqoUWijHBNYV84trWDUM0D254a4ymlLRNy2zNDWnrrjPUkIPi1bbvagw_JhuT7F1srfdqsGGKMu_JBMuV90GCCAfSkHshhoZnChm-_Adeh2nM-2eTm1HRMJHR0Ra1Y4hxtJ1cja7PzyURyE18Mscnf8eX7fNdw0n31tzJXV4ZHO6AijmBblRD6-KdE0LUgDfuZOt-Om_X_79Rvr28-nN1ta1wMdnbvxVqvJEsb0vll4_nck4WZ_CevZMX2b_Y-k4Fqb6NeYrlZ5xnBGhqBJyQX4CPyHs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213759869</pqid></control><display><type>article</type><title>elementary metabolite unit (EMU) based method of isotopically nonstationary flux analysis</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Young, Jamey D ; Walther, Jason L ; Antoniewicz, Maciek R ; Yoo, Hyuntae ; Stephanopoulos, Gregory</creator><creatorcontrib>Young, Jamey D ; Walther, Jason L ; Antoniewicz, Maciek R ; Yoo, Hyuntae ; Stephanopoulos, Gregory</creatorcontrib><description>Nonstationary metabolic flux analysis (NMFA) is at present a very computationally intensive exercise, especially for large reaction networks. We applied elementary metabolite unit (EMU) theory to NMFA, dramatically reducing computational difficulty. We also introduced block decoupling, a new method that systematically and comprehensively divides EMU systems of equations into smaller subproblems to further reduce computational difficulty. These improvements led to a 5000-fold reduction in simulation times, enabling an entirely new and more complicated set of problems to be analyzed with NMFA. We simulated a series of nonstationary and stationary GC/MS measurements for a large E. coli network that was then used to estimate parameters and their associated confidence intervals. We found that fluxes could be successfully estimated using only nonstationary labeling data and external flux measurements. Addition of near-stationary and stationary time points increased the precision of most parameters. Contrary to prior reports, the precision of nonstationary estimates proved to be comparable to the precision of estimates based solely on stationary data. Finally, we applied EMU-based NMFA to experimental nonstationary measurements taken from brown adipocytes and successfully estimated fluxes and some metabolite concentrations. By using NFMA instead of traditional MFA, the experiment required only 6 h instead of 50 (the time necessary for most metabolite labeling to reach 99% of isotopic steady state). Biotechnol. Bioeng. 2008;99: 686-699. © 2007 Wiley Periodicals, Inc.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.21632</identifier><identifier>PMID: 17787013</identifier><identifier>CODEN: BIBIAU</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Algorithms ; Biological and medical sciences ; Biotechnology ; brown adipocytes ; Cells ; Chromatography ; Computer Simulation ; E coli ; elementary metabolite units ; Escherichia coli ; Escherichia coli - metabolism ; Escherichia coli Proteins - metabolism ; Estimates ; Fundamental and applied biological sciences. Psychology ; Gas Chromatography-Mass Spectrometry - methods ; Gene Expression Profiling - methods ; Isotope Labeling - methods ; isotopically nonstationary ; Mass spectrometry ; metabolic engineering ; metabolic flux analysis ; Models, Biological ; Precision ; Signal Transduction - physiology</subject><ispartof>Biotechnology and bioengineering, 2008-02, Vol.99 (3), p.686-699</ispartof><rights>Copyright © 2007 Wiley Periodicals, Inc.</rights><rights>2008 INIST-CNRS</rights><rights>(c) 2007 Wiley Periodicals, Inc.</rights><rights>Copyright John Wiley and Sons, Limited Feb 15, 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5702-b5bed4012fa3a49b9a6697b503a47be48615000d7cddb553c8c6e47d3c4ffd5d3</citedby><cites>FETCH-LOGICAL-c5702-b5bed4012fa3a49b9a6697b503a47be48615000d7cddb553c8c6e47d3c4ffd5d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbit.21632$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbit.21632$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19994023$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17787013$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Young, Jamey D</creatorcontrib><creatorcontrib>Walther, Jason L</creatorcontrib><creatorcontrib>Antoniewicz, Maciek R</creatorcontrib><creatorcontrib>Yoo, Hyuntae</creatorcontrib><creatorcontrib>Stephanopoulos, Gregory</creatorcontrib><title>elementary metabolite unit (EMU) based method of isotopically nonstationary flux analysis</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol. Bioeng</addtitle><description>Nonstationary metabolic flux analysis (NMFA) is at present a very computationally intensive exercise, especially for large reaction networks. We applied elementary metabolite unit (EMU) theory to NMFA, dramatically reducing computational difficulty. We also introduced block decoupling, a new method that systematically and comprehensively divides EMU systems of equations into smaller subproblems to further reduce computational difficulty. These improvements led to a 5000-fold reduction in simulation times, enabling an entirely new and more complicated set of problems to be analyzed with NMFA. We simulated a series of nonstationary and stationary GC/MS measurements for a large E. coli network that was then used to estimate parameters and their associated confidence intervals. We found that fluxes could be successfully estimated using only nonstationary labeling data and external flux measurements. Addition of near-stationary and stationary time points increased the precision of most parameters. Contrary to prior reports, the precision of nonstationary estimates proved to be comparable to the precision of estimates based solely on stationary data. Finally, we applied EMU-based NMFA to experimental nonstationary measurements taken from brown adipocytes and successfully estimated fluxes and some metabolite concentrations. By using NFMA instead of traditional MFA, the experiment required only 6 h instead of 50 (the time necessary for most metabolite labeling to reach 99% of isotopic steady state). Biotechnol. Bioeng. 2008;99: 686-699. © 2007 Wiley Periodicals, Inc.</description><subject>Algorithms</subject><subject>Biological and medical sciences</subject><subject>Biotechnology</subject><subject>brown adipocytes</subject><subject>Cells</subject><subject>Chromatography</subject><subject>Computer Simulation</subject><subject>E coli</subject><subject>elementary metabolite units</subject><subject>Escherichia coli</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Estimates</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gas Chromatography-Mass Spectrometry - methods</subject><subject>Gene Expression Profiling - methods</subject><subject>Isotope Labeling - methods</subject><subject>isotopically nonstationary</subject><subject>Mass spectrometry</subject><subject>metabolic engineering</subject><subject>metabolic flux analysis</subject><subject>Models, Biological</subject><subject>Precision</subject><subject>Signal Transduction - physiology</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0U1v1DAQBuAIgei2cOAPQIRURA9px3Zsx0dY-oUWONAV4mTZsQNunXiJHdH993jZhUpIqKfIyjPjGb9F8QzBMQLAJ9qlY4wYwQ-KGQLBK8ACHhYzAGAVoQLvFfsxXucjbxh7XOwhzhsOiMyKr9bb3g5Jjeuyt0np4F2y5TS4VL4-_bA8KrWK1mz-fQ-mDF3pYkhh5Vrl_bocwhCTSi4Mmwadn25LNSi_ji4-KR51ykf7dPc9KJZnp1fzi2rx6fxy_mZRtZQDrjTV1tSAcKeIqoUWijHBNYV84trWDUM0D254a4ymlLRNy2zNDWnrrjPUkIPi1bbvagw_JhuT7F1srfdqsGGKMu_JBMuV90GCCAfSkHshhoZnChm-_Adeh2nM-2eTm1HRMJHR0Ra1Y4hxtJ1cja7PzyURyE18Mscnf8eX7fNdw0n31tzJXV4ZHO6AijmBblRD6-KdE0LUgDfuZOt-Om_X_79Rvr28-nN1ta1wMdnbvxVqvJEsb0vll4_nck4WZ_CevZMX2b_Y-k4Fqb6NeYrlZ5xnBGhqBJyQX4CPyHs</recordid><startdate>20080215</startdate><enddate>20080215</enddate><creator>Young, Jamey D</creator><creator>Walther, Jason L</creator><creator>Antoniewicz, Maciek R</creator><creator>Yoo, Hyuntae</creator><creator>Stephanopoulos, Gregory</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>FBQ</scope><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20080215</creationdate><title>elementary metabolite unit (EMU) based method of isotopically nonstationary flux analysis</title><author>Young, Jamey D ; Walther, Jason L ; Antoniewicz, Maciek R ; Yoo, Hyuntae ; Stephanopoulos, Gregory</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5702-b5bed4012fa3a49b9a6697b503a47be48615000d7cddb553c8c6e47d3c4ffd5d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Biological and medical sciences</topic><topic>Biotechnology</topic><topic>brown adipocytes</topic><topic>Cells</topic><topic>Chromatography</topic><topic>Computer Simulation</topic><topic>E coli</topic><topic>elementary metabolite units</topic><topic>Escherichia coli</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Estimates</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gas Chromatography-Mass Spectrometry - methods</topic><topic>Gene Expression Profiling - methods</topic><topic>Isotope Labeling - methods</topic><topic>isotopically nonstationary</topic><topic>Mass spectrometry</topic><topic>metabolic engineering</topic><topic>metabolic flux analysis</topic><topic>Models, Biological</topic><topic>Precision</topic><topic>Signal Transduction - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Young, Jamey D</creatorcontrib><creatorcontrib>Walther, Jason L</creatorcontrib><creatorcontrib>Antoniewicz, Maciek R</creatorcontrib><creatorcontrib>Yoo, Hyuntae</creatorcontrib><creatorcontrib>Stephanopoulos, Gregory</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Young, Jamey D</au><au>Walther, Jason L</au><au>Antoniewicz, Maciek R</au><au>Yoo, Hyuntae</au><au>Stephanopoulos, Gregory</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>elementary metabolite unit (EMU) based method of isotopically nonstationary flux analysis</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol. Bioeng</addtitle><date>2008-02-15</date><risdate>2008</risdate><volume>99</volume><issue>3</issue><spage>686</spage><epage>699</epage><pages>686-699</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><coden>BIBIAU</coden><abstract>Nonstationary metabolic flux analysis (NMFA) is at present a very computationally intensive exercise, especially for large reaction networks. We applied elementary metabolite unit (EMU) theory to NMFA, dramatically reducing computational difficulty. We also introduced block decoupling, a new method that systematically and comprehensively divides EMU systems of equations into smaller subproblems to further reduce computational difficulty. These improvements led to a 5000-fold reduction in simulation times, enabling an entirely new and more complicated set of problems to be analyzed with NMFA. We simulated a series of nonstationary and stationary GC/MS measurements for a large E. coli network that was then used to estimate parameters and their associated confidence intervals. We found that fluxes could be successfully estimated using only nonstationary labeling data and external flux measurements. Addition of near-stationary and stationary time points increased the precision of most parameters. Contrary to prior reports, the precision of nonstationary estimates proved to be comparable to the precision of estimates based solely on stationary data. Finally, we applied EMU-based NMFA to experimental nonstationary measurements taken from brown adipocytes and successfully estimated fluxes and some metabolite concentrations. By using NFMA instead of traditional MFA, the experiment required only 6 h instead of 50 (the time necessary for most metabolite labeling to reach 99% of isotopic steady state). Biotechnol. Bioeng. 2008;99: 686-699. © 2007 Wiley Periodicals, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>17787013</pmid><doi>10.1002/bit.21632</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3592 |
ispartof | Biotechnology and bioengineering, 2008-02, Vol.99 (3), p.686-699 |
issn | 0006-3592 1097-0290 |
language | eng |
recordid | cdi_proquest_miscellaneous_70169655 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Algorithms Biological and medical sciences Biotechnology brown adipocytes Cells Chromatography Computer Simulation E coli elementary metabolite units Escherichia coli Escherichia coli - metabolism Escherichia coli Proteins - metabolism Estimates Fundamental and applied biological sciences. Psychology Gas Chromatography-Mass Spectrometry - methods Gene Expression Profiling - methods Isotope Labeling - methods isotopically nonstationary Mass spectrometry metabolic engineering metabolic flux analysis Models, Biological Precision Signal Transduction - physiology |
title | elementary metabolite unit (EMU) based method of isotopically nonstationary flux analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T21%3A19%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=elementary%20metabolite%20unit%20(EMU)%20based%20method%20of%20isotopically%20nonstationary%20flux%20analysis&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Young,%20Jamey%20D&rft.date=2008-02-15&rft.volume=99&rft.issue=3&rft.spage=686&rft.epage=699&rft.pages=686-699&rft.issn=0006-3592&rft.eissn=1097-0290&rft.coden=BIBIAU&rft_id=info:doi/10.1002/bit.21632&rft_dat=%3Cproquest_cross%3E1415979301%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213759869&rft_id=info:pmid/17787013&rfr_iscdi=true |