Macro- to Nanoscale Wear Prevention via Molecular Adsorption

As the size of mechanical systems shrinks from macro- to nanoscales, surface phenomena such as adhesion, friction, and wear become increasingly significant. This paper demonstrates the use of alcohol adsorption as a means of continuously replenishing the lubricating layer on the working device surfa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2008-01, Vol.24 (1), p.155-159
Hauptverfasser: Asay, David B, Dugger, Michael T, Ohlhausen, James A, Kim, Seong H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 159
container_issue 1
container_start_page 155
container_title Langmuir
container_volume 24
creator Asay, David B
Dugger, Michael T
Ohlhausen, James A
Kim, Seong H
description As the size of mechanical systems shrinks from macro- to nanoscales, surface phenomena such as adhesion, friction, and wear become increasingly significant. This paper demonstrates the use of alcohol adsorption as a means of continuously replenishing the lubricating layer on the working device surfaces and elucidates the tribochemical reaction products formed in the sliding contact region. Friction and wear of native silicon oxide were studied over a wide range of length scales from macro- to nanoscales using a ball-on-flat tribometer (millimeter scale), sidewall microelectromechanical system (MEMS) tribometer (micrometer scale), and atomic force microscopy (nanometer scale). In all cases, the alcohol vapor adsorption successfully lubricated and prevented wear. Imaging time-of-flight secondary ion mass spectrometry analysis of the sliding contact region revealed that high molecular weight oligomeric species were formed via tribochemical reactions of the adsorbed linear alcohol molecules. These tribochemical products seemed to enhance the lubrication and wear prevention. In the case of sidewall MEMS tests, the lifetime of the MEMS device was radically increased via vapor-phase lubrication with alcohol.
doi_str_mv 10.1021/la702598g
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70160464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70160464</sourcerecordid><originalsourceid>FETCH-LOGICAL-a482t-f365ed6cc027b7bde4130c3f522db5c29850cf8375fff559a4b82058abb8379d3</originalsourceid><addsrcrecordid>eNptkF1LwzAUhoMobk4v_APSGwUvqmk-mga8GVM3ZdOBk12GNE2k2jUzaYf-ezM2thuvDpz34eWcB4DzBN4kECW3lWQQUZ59HIBuQhGMaYbYIehCRnDMSIo74MT7Twghx4Qfg06SQUI4wV1wN5HK2ThqbPQia-uVrHQ019JFU6dXum5KW0erUkYTW2nVViHoF9665To4BUdGVl6fbWcPvD8-zAajePw6fBr0x7EkGWpig1Oqi1QpiFjO8kKTBEOFDUWoyKlCPKNQmQwzaoyhlEuSZwjSTOZ5WPIC98DVpnfp7HerfSMWpVe6qmStbesFg0kKSUoCeL0Bw0_eO23E0pUL6X5FAsValdipCuzFtrTNF7rYk1s3AbjcAnKtxThZq9LvOc4ZIhgFLt5wpW_0zy6X7kukLDwlZtM3MSP3w9FzOhds3yuVF5-2dXVw98-Bf0Bnirs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70160464</pqid></control><display><type>article</type><title>Macro- to Nanoscale Wear Prevention via Molecular Adsorption</title><source>American Chemical Society Journals</source><creator>Asay, David B ; Dugger, Michael T ; Ohlhausen, James A ; Kim, Seong H</creator><creatorcontrib>Asay, David B ; Dugger, Michael T ; Ohlhausen, James A ; Kim, Seong H</creatorcontrib><description>As the size of mechanical systems shrinks from macro- to nanoscales, surface phenomena such as adhesion, friction, and wear become increasingly significant. This paper demonstrates the use of alcohol adsorption as a means of continuously replenishing the lubricating layer on the working device surfaces and elucidates the tribochemical reaction products formed in the sliding contact region. Friction and wear of native silicon oxide were studied over a wide range of length scales from macro- to nanoscales using a ball-on-flat tribometer (millimeter scale), sidewall microelectromechanical system (MEMS) tribometer (micrometer scale), and atomic force microscopy (nanometer scale). In all cases, the alcohol vapor adsorption successfully lubricated and prevented wear. Imaging time-of-flight secondary ion mass spectrometry analysis of the sliding contact region revealed that high molecular weight oligomeric species were formed via tribochemical reactions of the adsorbed linear alcohol molecules. These tribochemical products seemed to enhance the lubrication and wear prevention. In the case of sidewall MEMS tests, the lifetime of the MEMS device was radically increased via vapor-phase lubrication with alcohol.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la702598g</identifier><identifier>PMID: 18044943</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Chemistry ; Colloidal state and disperse state ; Exact sciences and technology ; General and physical chemistry ; Surface physical chemistry</subject><ispartof>Langmuir, 2008-01, Vol.24 (1), p.155-159</ispartof><rights>Copyright © 2008 American Chemical Society</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a482t-f365ed6cc027b7bde4130c3f522db5c29850cf8375fff559a4b82058abb8379d3</citedby><cites>FETCH-LOGICAL-a482t-f365ed6cc027b7bde4130c3f522db5c29850cf8375fff559a4b82058abb8379d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la702598g$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la702598g$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19972432$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18044943$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Asay, David B</creatorcontrib><creatorcontrib>Dugger, Michael T</creatorcontrib><creatorcontrib>Ohlhausen, James A</creatorcontrib><creatorcontrib>Kim, Seong H</creatorcontrib><title>Macro- to Nanoscale Wear Prevention via Molecular Adsorption</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>As the size of mechanical systems shrinks from macro- to nanoscales, surface phenomena such as adhesion, friction, and wear become increasingly significant. This paper demonstrates the use of alcohol adsorption as a means of continuously replenishing the lubricating layer on the working device surfaces and elucidates the tribochemical reaction products formed in the sliding contact region. Friction and wear of native silicon oxide were studied over a wide range of length scales from macro- to nanoscales using a ball-on-flat tribometer (millimeter scale), sidewall microelectromechanical system (MEMS) tribometer (micrometer scale), and atomic force microscopy (nanometer scale). In all cases, the alcohol vapor adsorption successfully lubricated and prevented wear. Imaging time-of-flight secondary ion mass spectrometry analysis of the sliding contact region revealed that high molecular weight oligomeric species were formed via tribochemical reactions of the adsorbed linear alcohol molecules. These tribochemical products seemed to enhance the lubrication and wear prevention. In the case of sidewall MEMS tests, the lifetime of the MEMS device was radically increased via vapor-phase lubrication with alcohol.</description><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Surface physical chemistry</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNptkF1LwzAUhoMobk4v_APSGwUvqmk-mga8GVM3ZdOBk12GNE2k2jUzaYf-ezM2thuvDpz34eWcB4DzBN4kECW3lWQQUZ59HIBuQhGMaYbYIehCRnDMSIo74MT7Twghx4Qfg06SQUI4wV1wN5HK2ThqbPQia-uVrHQ019JFU6dXum5KW0erUkYTW2nVViHoF9665To4BUdGVl6fbWcPvD8-zAajePw6fBr0x7EkGWpig1Oqi1QpiFjO8kKTBEOFDUWoyKlCPKNQmQwzaoyhlEuSZwjSTOZ5WPIC98DVpnfp7HerfSMWpVe6qmStbesFg0kKSUoCeL0Bw0_eO23E0pUL6X5FAsValdipCuzFtrTNF7rYk1s3AbjcAnKtxThZq9LvOc4ZIhgFLt5wpW_0zy6X7kukLDwlZtM3MSP3w9FzOhds3yuVF5-2dXVw98-Bf0Bnirs</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>Asay, David B</creator><creator>Dugger, Michael T</creator><creator>Ohlhausen, James A</creator><creator>Kim, Seong H</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20080101</creationdate><title>Macro- to Nanoscale Wear Prevention via Molecular Adsorption</title><author>Asay, David B ; Dugger, Michael T ; Ohlhausen, James A ; Kim, Seong H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a482t-f365ed6cc027b7bde4130c3f522db5c29850cf8375fff559a4b82058abb8379d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Surface physical chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asay, David B</creatorcontrib><creatorcontrib>Dugger, Michael T</creatorcontrib><creatorcontrib>Ohlhausen, James A</creatorcontrib><creatorcontrib>Kim, Seong H</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asay, David B</au><au>Dugger, Michael T</au><au>Ohlhausen, James A</au><au>Kim, Seong H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Macro- to Nanoscale Wear Prevention via Molecular Adsorption</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2008-01-01</date><risdate>2008</risdate><volume>24</volume><issue>1</issue><spage>155</spage><epage>159</epage><pages>155-159</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>As the size of mechanical systems shrinks from macro- to nanoscales, surface phenomena such as adhesion, friction, and wear become increasingly significant. This paper demonstrates the use of alcohol adsorption as a means of continuously replenishing the lubricating layer on the working device surfaces and elucidates the tribochemical reaction products formed in the sliding contact region. Friction and wear of native silicon oxide were studied over a wide range of length scales from macro- to nanoscales using a ball-on-flat tribometer (millimeter scale), sidewall microelectromechanical system (MEMS) tribometer (micrometer scale), and atomic force microscopy (nanometer scale). In all cases, the alcohol vapor adsorption successfully lubricated and prevented wear. Imaging time-of-flight secondary ion mass spectrometry analysis of the sliding contact region revealed that high molecular weight oligomeric species were formed via tribochemical reactions of the adsorbed linear alcohol molecules. These tribochemical products seemed to enhance the lubrication and wear prevention. In the case of sidewall MEMS tests, the lifetime of the MEMS device was radically increased via vapor-phase lubrication with alcohol.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>18044943</pmid><doi>10.1021/la702598g</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2008-01, Vol.24 (1), p.155-159
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_70160464
source American Chemical Society Journals
subjects Chemistry
Colloidal state and disperse state
Exact sciences and technology
General and physical chemistry
Surface physical chemistry
title Macro- to Nanoscale Wear Prevention via Molecular Adsorption
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A47%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Macro-%20to%20Nanoscale%20Wear%20Prevention%20via%20Molecular%20Adsorption&rft.jtitle=Langmuir&rft.au=Asay,%20David%20B&rft.date=2008-01-01&rft.volume=24&rft.issue=1&rft.spage=155&rft.epage=159&rft.pages=155-159&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la702598g&rft_dat=%3Cproquest_cross%3E70160464%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70160464&rft_id=info:pmid/18044943&rfr_iscdi=true