Knowledge discovery with classification rules in a cardiovascular dataset

In this paper we study an evolutionary machine learning approach to data mining and knowledge discovery based on the induction of classification rules. A method for automatic rules induction called AREX using evolutionary induction of decision trees and automatic programming is introduced. The propo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods and programs in biomedicine 2005-12, Vol.80, p.S39-S49
Hauptverfasser: Podgorelec, Vili, Kokol, Peter, Stiglic, Milojka Molan, Heričko, Marjan, Rozman, Ivan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page S49
container_issue
container_start_page S39
container_title Computer methods and programs in biomedicine
container_volume 80
creator Podgorelec, Vili
Kokol, Peter
Stiglic, Milojka Molan
Heričko, Marjan
Rozman, Ivan
description In this paper we study an evolutionary machine learning approach to data mining and knowledge discovery based on the induction of classification rules. A method for automatic rules induction called AREX using evolutionary induction of decision trees and automatic programming is introduced. The proposed algorithm is applied to a cardiovascular dataset consisting of different groups of attributes which should possibly reveal the presence of some specific cardiovascular problems in young patients. A case study is presented that shows the use of AREX for the classification of patients and for discovering possible new medical knowledge from the dataset. The defined knowledge discovery loop comprises a medical expert's assessment of induced rules to drive the evolution of rule sets towards more appropriate solutions. The final result is the discovery of a possible new medical knowledge in the field of pediatric cardiology.
doi_str_mv 10.1016/S0169-2607(05)80005-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70137398</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169260705800057</els_id><sourcerecordid>70137398</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-5ab3758f48f33171f27fbeac3aafd8eb3696f57e2943a41e87e413e9090b3c513</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EoqXwCaCsECwCdhzHzgqhikdFJRbA2nKcMRilcbGTVv173Idg2c3M5ty5o4PQOcE3BJPi9i2OMs0KzK8wuxYYY5byAzQkgmcpZwU7RMM_ZIBOQviOTMZYcYwGpGAZJjkdoslL65YN1J-Q1DZotwC_Spa2-0p0o0KwxmrVWdcmvm8gJLZNVKKVr61bqKD7RvmkVp0K0J2iI6OaAGe7PUIfjw_v4-d0-vo0Gd9PU03LvEuZqihnwuTCUEo4MRk3FShNlTK1gIoWZWEYh6zMqcoJCA45oVDiEldUM0JH6HJ7d-7dTw-hk7P4ODSNasH1QXJMKKel2AuS2ICFYBFkW1B7F4IHI-fezpRfSYLlWrbcyJZrkxIzuZEtecxd7Ar6agb1f2pnNwJ3WwCij4UFL4O20GqorQfdydrZPRW_4raOzw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19430885</pqid></control><display><type>article</type><title>Knowledge discovery with classification rules in a cardiovascular dataset</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>MEDLINE</source><creator>Podgorelec, Vili ; Kokol, Peter ; Stiglic, Milojka Molan ; Heričko, Marjan ; Rozman, Ivan</creator><creatorcontrib>Podgorelec, Vili ; Kokol, Peter ; Stiglic, Milojka Molan ; Heričko, Marjan ; Rozman, Ivan</creatorcontrib><description>In this paper we study an evolutionary machine learning approach to data mining and knowledge discovery based on the induction of classification rules. A method for automatic rules induction called AREX using evolutionary induction of decision trees and automatic programming is introduced. The proposed algorithm is applied to a cardiovascular dataset consisting of different groups of attributes which should possibly reveal the presence of some specific cardiovascular problems in young patients. A case study is presented that shows the use of AREX for the classification of patients and for discovering possible new medical knowledge from the dataset. The defined knowledge discovery loop comprises a medical expert's assessment of induced rules to drive the evolution of rule sets towards more appropriate solutions. The final result is the discovery of a possible new medical knowledge in the field of pediatric cardiology.</description><identifier>ISSN: 0169-2607</identifier><identifier>EISSN: 1872-7565</identifier><identifier>DOI: 10.1016/S0169-2607(05)80005-7</identifier><identifier>PMID: 16520143</identifier><language>eng</language><publisher>Ireland: Elsevier Ireland Ltd</publisher><subject>Algorithms ; Cardiovascular System ; Child ; Classification rules ; Humans ; Information Storage and Retrieval ; Knowledge Bases ; Knowledge discovery ; Machine learning ; Medical data mining ; Pediatric cardiology</subject><ispartof>Computer methods and programs in biomedicine, 2005-12, Vol.80, p.S39-S49</ispartof><rights>2005 Elsevier Ireland Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-5ab3758f48f33171f27fbeac3aafd8eb3696f57e2943a41e87e413e9090b3c513</citedby><cites>FETCH-LOGICAL-c394t-5ab3758f48f33171f27fbeac3aafd8eb3696f57e2943a41e87e413e9090b3c513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0169-2607(05)80005-7$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16520143$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Podgorelec, Vili</creatorcontrib><creatorcontrib>Kokol, Peter</creatorcontrib><creatorcontrib>Stiglic, Milojka Molan</creatorcontrib><creatorcontrib>Heričko, Marjan</creatorcontrib><creatorcontrib>Rozman, Ivan</creatorcontrib><title>Knowledge discovery with classification rules in a cardiovascular dataset</title><title>Computer methods and programs in biomedicine</title><addtitle>Comput Methods Programs Biomed</addtitle><description>In this paper we study an evolutionary machine learning approach to data mining and knowledge discovery based on the induction of classification rules. A method for automatic rules induction called AREX using evolutionary induction of decision trees and automatic programming is introduced. The proposed algorithm is applied to a cardiovascular dataset consisting of different groups of attributes which should possibly reveal the presence of some specific cardiovascular problems in young patients. A case study is presented that shows the use of AREX for the classification of patients and for discovering possible new medical knowledge from the dataset. The defined knowledge discovery loop comprises a medical expert's assessment of induced rules to drive the evolution of rule sets towards more appropriate solutions. The final result is the discovery of a possible new medical knowledge in the field of pediatric cardiology.</description><subject>Algorithms</subject><subject>Cardiovascular System</subject><subject>Child</subject><subject>Classification rules</subject><subject>Humans</subject><subject>Information Storage and Retrieval</subject><subject>Knowledge Bases</subject><subject>Knowledge discovery</subject><subject>Machine learning</subject><subject>Medical data mining</subject><subject>Pediatric cardiology</subject><issn>0169-2607</issn><issn>1872-7565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtOwzAQRS0EoqXwCaCsECwCdhzHzgqhikdFJRbA2nKcMRilcbGTVv173Idg2c3M5ty5o4PQOcE3BJPi9i2OMs0KzK8wuxYYY5byAzQkgmcpZwU7RMM_ZIBOQviOTMZYcYwGpGAZJjkdoslL65YN1J-Q1DZotwC_Spa2-0p0o0KwxmrVWdcmvm8gJLZNVKKVr61bqKD7RvmkVp0K0J2iI6OaAGe7PUIfjw_v4-d0-vo0Gd9PU03LvEuZqihnwuTCUEo4MRk3FShNlTK1gIoWZWEYh6zMqcoJCA45oVDiEldUM0JH6HJ7d-7dTw-hk7P4ODSNasH1QXJMKKel2AuS2ICFYBFkW1B7F4IHI-fezpRfSYLlWrbcyJZrkxIzuZEtecxd7Ar6agb1f2pnNwJ3WwCij4UFL4O20GqorQfdydrZPRW_4raOzw</recordid><startdate>20051201</startdate><enddate>20051201</enddate><creator>Podgorelec, Vili</creator><creator>Kokol, Peter</creator><creator>Stiglic, Milojka Molan</creator><creator>Heričko, Marjan</creator><creator>Rozman, Ivan</creator><general>Elsevier Ireland Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20051201</creationdate><title>Knowledge discovery with classification rules in a cardiovascular dataset</title><author>Podgorelec, Vili ; Kokol, Peter ; Stiglic, Milojka Molan ; Heričko, Marjan ; Rozman, Ivan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-5ab3758f48f33171f27fbeac3aafd8eb3696f57e2943a41e87e413e9090b3c513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Cardiovascular System</topic><topic>Child</topic><topic>Classification rules</topic><topic>Humans</topic><topic>Information Storage and Retrieval</topic><topic>Knowledge Bases</topic><topic>Knowledge discovery</topic><topic>Machine learning</topic><topic>Medical data mining</topic><topic>Pediatric cardiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Podgorelec, Vili</creatorcontrib><creatorcontrib>Kokol, Peter</creatorcontrib><creatorcontrib>Stiglic, Milojka Molan</creatorcontrib><creatorcontrib>Heričko, Marjan</creatorcontrib><creatorcontrib>Rozman, Ivan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Computer methods and programs in biomedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Podgorelec, Vili</au><au>Kokol, Peter</au><au>Stiglic, Milojka Molan</au><au>Heričko, Marjan</au><au>Rozman, Ivan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Knowledge discovery with classification rules in a cardiovascular dataset</atitle><jtitle>Computer methods and programs in biomedicine</jtitle><addtitle>Comput Methods Programs Biomed</addtitle><date>2005-12-01</date><risdate>2005</risdate><volume>80</volume><spage>S39</spage><epage>S49</epage><pages>S39-S49</pages><issn>0169-2607</issn><eissn>1872-7565</eissn><abstract>In this paper we study an evolutionary machine learning approach to data mining and knowledge discovery based on the induction of classification rules. A method for automatic rules induction called AREX using evolutionary induction of decision trees and automatic programming is introduced. The proposed algorithm is applied to a cardiovascular dataset consisting of different groups of attributes which should possibly reveal the presence of some specific cardiovascular problems in young patients. A case study is presented that shows the use of AREX for the classification of patients and for discovering possible new medical knowledge from the dataset. The defined knowledge discovery loop comprises a medical expert's assessment of induced rules to drive the evolution of rule sets towards more appropriate solutions. The final result is the discovery of a possible new medical knowledge in the field of pediatric cardiology.</abstract><cop>Ireland</cop><pub>Elsevier Ireland Ltd</pub><pmid>16520143</pmid><doi>10.1016/S0169-2607(05)80005-7</doi></addata></record>
fulltext fulltext
identifier ISSN: 0169-2607
ispartof Computer methods and programs in biomedicine, 2005-12, Vol.80, p.S39-S49
issn 0169-2607
1872-7565
language eng
recordid cdi_proquest_miscellaneous_70137398
source Elsevier ScienceDirect Journals Complete - AutoHoldings; MEDLINE
subjects Algorithms
Cardiovascular System
Child
Classification rules
Humans
Information Storage and Retrieval
Knowledge Bases
Knowledge discovery
Machine learning
Medical data mining
Pediatric cardiology
title Knowledge discovery with classification rules in a cardiovascular dataset
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T03%3A00%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Knowledge%20discovery%20with%20classification%20rules%20in%20a%20cardiovascular%20dataset&rft.jtitle=Computer%20methods%20and%20programs%20in%20biomedicine&rft.au=Podgorelec,%20Vili&rft.date=2005-12-01&rft.volume=80&rft.spage=S39&rft.epage=S49&rft.pages=S39-S49&rft.issn=0169-2607&rft.eissn=1872-7565&rft_id=info:doi/10.1016/S0169-2607(05)80005-7&rft_dat=%3Cproquest_cross%3E70137398%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19430885&rft_id=info:pmid/16520143&rft_els_id=S0169260705800057&rfr_iscdi=true