Knowledge discovery with classification rules in a cardiovascular dataset
In this paper we study an evolutionary machine learning approach to data mining and knowledge discovery based on the induction of classification rules. A method for automatic rules induction called AREX using evolutionary induction of decision trees and automatic programming is introduced. The propo...
Gespeichert in:
Veröffentlicht in: | Computer methods and programs in biomedicine 2005-12, Vol.80, p.S39-S49 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | S49 |
---|---|
container_issue | |
container_start_page | S39 |
container_title | Computer methods and programs in biomedicine |
container_volume | 80 |
creator | Podgorelec, Vili Kokol, Peter Stiglic, Milojka Molan Heričko, Marjan Rozman, Ivan |
description | In this paper we study an evolutionary machine learning approach to data mining and knowledge discovery based on the induction of classification rules. A method for automatic rules induction called AREX using evolutionary induction of decision trees and automatic programming is introduced. The proposed algorithm is applied to a cardiovascular dataset consisting of different groups of attributes which should possibly reveal the presence of some specific cardiovascular problems in young patients. A case study is presented that shows the use of AREX for the classification of patients and for discovering possible new medical knowledge from the dataset. The defined knowledge discovery loop comprises a medical expert's assessment of induced rules to drive the evolution of rule sets towards more appropriate solutions. The final result is the discovery of a possible new medical knowledge in the field of pediatric cardiology. |
doi_str_mv | 10.1016/S0169-2607(05)80005-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70137398</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169260705800057</els_id><sourcerecordid>70137398</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-5ab3758f48f33171f27fbeac3aafd8eb3696f57e2943a41e87e413e9090b3c513</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EoqXwCaCsECwCdhzHzgqhikdFJRbA2nKcMRilcbGTVv173Idg2c3M5ty5o4PQOcE3BJPi9i2OMs0KzK8wuxYYY5byAzQkgmcpZwU7RMM_ZIBOQviOTMZYcYwGpGAZJjkdoslL65YN1J-Q1DZotwC_Spa2-0p0o0KwxmrVWdcmvm8gJLZNVKKVr61bqKD7RvmkVp0K0J2iI6OaAGe7PUIfjw_v4-d0-vo0Gd9PU03LvEuZqihnwuTCUEo4MRk3FShNlTK1gIoWZWEYh6zMqcoJCA45oVDiEldUM0JH6HJ7d-7dTw-hk7P4ODSNasH1QXJMKKel2AuS2ICFYBFkW1B7F4IHI-fezpRfSYLlWrbcyJZrkxIzuZEtecxd7Ar6agb1f2pnNwJ3WwCij4UFL4O20GqorQfdydrZPRW_4raOzw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19430885</pqid></control><display><type>article</type><title>Knowledge discovery with classification rules in a cardiovascular dataset</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>MEDLINE</source><creator>Podgorelec, Vili ; Kokol, Peter ; Stiglic, Milojka Molan ; Heričko, Marjan ; Rozman, Ivan</creator><creatorcontrib>Podgorelec, Vili ; Kokol, Peter ; Stiglic, Milojka Molan ; Heričko, Marjan ; Rozman, Ivan</creatorcontrib><description>In this paper we study an evolutionary machine learning approach to data mining and knowledge discovery based on the induction of classification rules. A method for automatic rules induction called AREX using evolutionary induction of decision trees and automatic programming is introduced. The proposed algorithm is applied to a cardiovascular dataset consisting of different groups of attributes which should possibly reveal the presence of some specific cardiovascular problems in young patients. A case study is presented that shows the use of AREX for the classification of patients and for discovering possible new medical knowledge from the dataset. The defined knowledge discovery loop comprises a medical expert's assessment of induced rules to drive the evolution of rule sets towards more appropriate solutions. The final result is the discovery of a possible new medical knowledge in the field of pediatric cardiology.</description><identifier>ISSN: 0169-2607</identifier><identifier>EISSN: 1872-7565</identifier><identifier>DOI: 10.1016/S0169-2607(05)80005-7</identifier><identifier>PMID: 16520143</identifier><language>eng</language><publisher>Ireland: Elsevier Ireland Ltd</publisher><subject>Algorithms ; Cardiovascular System ; Child ; Classification rules ; Humans ; Information Storage and Retrieval ; Knowledge Bases ; Knowledge discovery ; Machine learning ; Medical data mining ; Pediatric cardiology</subject><ispartof>Computer methods and programs in biomedicine, 2005-12, Vol.80, p.S39-S49</ispartof><rights>2005 Elsevier Ireland Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-5ab3758f48f33171f27fbeac3aafd8eb3696f57e2943a41e87e413e9090b3c513</citedby><cites>FETCH-LOGICAL-c394t-5ab3758f48f33171f27fbeac3aafd8eb3696f57e2943a41e87e413e9090b3c513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0169-2607(05)80005-7$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16520143$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Podgorelec, Vili</creatorcontrib><creatorcontrib>Kokol, Peter</creatorcontrib><creatorcontrib>Stiglic, Milojka Molan</creatorcontrib><creatorcontrib>Heričko, Marjan</creatorcontrib><creatorcontrib>Rozman, Ivan</creatorcontrib><title>Knowledge discovery with classification rules in a cardiovascular dataset</title><title>Computer methods and programs in biomedicine</title><addtitle>Comput Methods Programs Biomed</addtitle><description>In this paper we study an evolutionary machine learning approach to data mining and knowledge discovery based on the induction of classification rules. A method for automatic rules induction called AREX using evolutionary induction of decision trees and automatic programming is introduced. The proposed algorithm is applied to a cardiovascular dataset consisting of different groups of attributes which should possibly reveal the presence of some specific cardiovascular problems in young patients. A case study is presented that shows the use of AREX for the classification of patients and for discovering possible new medical knowledge from the dataset. The defined knowledge discovery loop comprises a medical expert's assessment of induced rules to drive the evolution of rule sets towards more appropriate solutions. The final result is the discovery of a possible new medical knowledge in the field of pediatric cardiology.</description><subject>Algorithms</subject><subject>Cardiovascular System</subject><subject>Child</subject><subject>Classification rules</subject><subject>Humans</subject><subject>Information Storage and Retrieval</subject><subject>Knowledge Bases</subject><subject>Knowledge discovery</subject><subject>Machine learning</subject><subject>Medical data mining</subject><subject>Pediatric cardiology</subject><issn>0169-2607</issn><issn>1872-7565</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMtOwzAQRS0EoqXwCaCsECwCdhzHzgqhikdFJRbA2nKcMRilcbGTVv173Idg2c3M5ty5o4PQOcE3BJPi9i2OMs0KzK8wuxYYY5byAzQkgmcpZwU7RMM_ZIBOQviOTMZYcYwGpGAZJjkdoslL65YN1J-Q1DZotwC_Spa2-0p0o0KwxmrVWdcmvm8gJLZNVKKVr61bqKD7RvmkVp0K0J2iI6OaAGe7PUIfjw_v4-d0-vo0Gd9PU03LvEuZqihnwuTCUEo4MRk3FShNlTK1gIoWZWEYh6zMqcoJCA45oVDiEldUM0JH6HJ7d-7dTw-hk7P4ODSNasH1QXJMKKel2AuS2ICFYBFkW1B7F4IHI-fezpRfSYLlWrbcyJZrkxIzuZEtecxd7Ar6agb1f2pnNwJ3WwCij4UFL4O20GqorQfdydrZPRW_4raOzw</recordid><startdate>20051201</startdate><enddate>20051201</enddate><creator>Podgorelec, Vili</creator><creator>Kokol, Peter</creator><creator>Stiglic, Milojka Molan</creator><creator>Heričko, Marjan</creator><creator>Rozman, Ivan</creator><general>Elsevier Ireland Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20051201</creationdate><title>Knowledge discovery with classification rules in a cardiovascular dataset</title><author>Podgorelec, Vili ; Kokol, Peter ; Stiglic, Milojka Molan ; Heričko, Marjan ; Rozman, Ivan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-5ab3758f48f33171f27fbeac3aafd8eb3696f57e2943a41e87e413e9090b3c513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Cardiovascular System</topic><topic>Child</topic><topic>Classification rules</topic><topic>Humans</topic><topic>Information Storage and Retrieval</topic><topic>Knowledge Bases</topic><topic>Knowledge discovery</topic><topic>Machine learning</topic><topic>Medical data mining</topic><topic>Pediatric cardiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Podgorelec, Vili</creatorcontrib><creatorcontrib>Kokol, Peter</creatorcontrib><creatorcontrib>Stiglic, Milojka Molan</creatorcontrib><creatorcontrib>Heričko, Marjan</creatorcontrib><creatorcontrib>Rozman, Ivan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Computer methods and programs in biomedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Podgorelec, Vili</au><au>Kokol, Peter</au><au>Stiglic, Milojka Molan</au><au>Heričko, Marjan</au><au>Rozman, Ivan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Knowledge discovery with classification rules in a cardiovascular dataset</atitle><jtitle>Computer methods and programs in biomedicine</jtitle><addtitle>Comput Methods Programs Biomed</addtitle><date>2005-12-01</date><risdate>2005</risdate><volume>80</volume><spage>S39</spage><epage>S49</epage><pages>S39-S49</pages><issn>0169-2607</issn><eissn>1872-7565</eissn><abstract>In this paper we study an evolutionary machine learning approach to data mining and knowledge discovery based on the induction of classification rules. A method for automatic rules induction called AREX using evolutionary induction of decision trees and automatic programming is introduced. The proposed algorithm is applied to a cardiovascular dataset consisting of different groups of attributes which should possibly reveal the presence of some specific cardiovascular problems in young patients. A case study is presented that shows the use of AREX for the classification of patients and for discovering possible new medical knowledge from the dataset. The defined knowledge discovery loop comprises a medical expert's assessment of induced rules to drive the evolution of rule sets towards more appropriate solutions. The final result is the discovery of a possible new medical knowledge in the field of pediatric cardiology.</abstract><cop>Ireland</cop><pub>Elsevier Ireland Ltd</pub><pmid>16520143</pmid><doi>10.1016/S0169-2607(05)80005-7</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-2607 |
ispartof | Computer methods and programs in biomedicine, 2005-12, Vol.80, p.S39-S49 |
issn | 0169-2607 1872-7565 |
language | eng |
recordid | cdi_proquest_miscellaneous_70137398 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings; MEDLINE |
subjects | Algorithms Cardiovascular System Child Classification rules Humans Information Storage and Retrieval Knowledge Bases Knowledge discovery Machine learning Medical data mining Pediatric cardiology |
title | Knowledge discovery with classification rules in a cardiovascular dataset |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T03%3A00%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Knowledge%20discovery%20with%20classification%20rules%20in%20a%20cardiovascular%20dataset&rft.jtitle=Computer%20methods%20and%20programs%20in%20biomedicine&rft.au=Podgorelec,%20Vili&rft.date=2005-12-01&rft.volume=80&rft.spage=S39&rft.epage=S49&rft.pages=S39-S49&rft.issn=0169-2607&rft.eissn=1872-7565&rft_id=info:doi/10.1016/S0169-2607(05)80005-7&rft_dat=%3Cproquest_cross%3E70137398%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19430885&rft_id=info:pmid/16520143&rft_els_id=S0169260705800057&rfr_iscdi=true |