Single functional group interactions with individual carbon nanotubes

Carbon nanotubes 1 display a consummate blend of materials properties that affect applications ranging from nanoelectronic circuits 2 and biosensors 3 to field emitters 4 and membranes 5 . These applications use the non-covalent interactions between the nanotubes and chemical functionalities 6 , oft...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature nanotechnology 2007-11, Vol.2 (11), p.692-697
Hauptverfasser: Friddle, Raymond W, Lemieux, Melburne C, Noy, Aleksandr, Cicero, Giancarlo, Artyukhin, Alexander B, Tsukruk, Vladimir V, Grossman, Jeffrey C, Galli, Giulia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 697
container_issue 11
container_start_page 692
container_title Nature nanotechnology
container_volume 2
creator Friddle, Raymond W
Lemieux, Melburne C
Noy, Aleksandr
Cicero, Giancarlo
Artyukhin, Alexander B
Tsukruk, Vladimir V
Grossman, Jeffrey C
Galli, Giulia
description Carbon nanotubes 1 display a consummate blend of materials properties that affect applications ranging from nanoelectronic circuits 2 and biosensors 3 to field emitters 4 and membranes 5 . These applications use the non-covalent interactions between the nanotubes and chemical functionalities 6 , often involving a few molecules at a time. Despite their wide use, we still lack a fundamental understanding and molecular-level control of these interactions. We have used chemical force microscopy 7 to measure the strength of the interactions of single chemical functional groups with the sidewalls of vapour-grown individual single-walled carbon nanotubes. Surprisingly, the interaction strength does not follow conventional trends of increasing polarity or hydrophobicity, and instead reflects the complex electronic interactions between the nanotube and the functional group. Ab initio calculations confirm the observed trends and predict binding force distributions for a single molecular contact that match the experimental results. Our analysis also reveals the important role of molecular linkage dynamics in determining interaction strength at the single functional group level.
doi_str_mv 10.1038/nnano.2007.334
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70134328</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70134328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-e520fb853e1fe6a4f5388a04c3a5081ccfd9d0c2e6c8cddc3bf0f9bec39461ec3</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4Mobk6vHqWIeGuXNOmaHmXMHzDwoJ5DmiYzo0tm0ij-92br2GDg6YWXz_s-3geAawQzBDEdG8ONzXIIywxjcgKGqCQ0xbgqTvdvWg7AhfdLCIu8ysk5GCA6KQiB5RDM3rRZtDJRwYhOW8PbZOFsWCfadNLxbc8nP7r7jJ1Gf-smRERwV1uTbHZ3oZb-Epwp3np5tasj8PE4e58-p_PXp5fpwzwVmFZdKoscqpoWWCIlJ5yoAlPKIRGYF5AiIVRTNVDkciKoaBqBawVVVUuBKzJBsYzAfZ-7dvYrSN-xlfZCti030gbPSogwwTmN4O0RuLTBxes8oyUqKSE5iVDWQ8JZ751UbO30irtfhiDb2GVbu2xjl0W7ceBmlxrqlWwO-E5nBMY94OOXWUh3WPtv5F0_YXgXnNxHHmF_NDKUIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>871784424</pqid></control><display><type>article</type><title>Single functional group interactions with individual carbon nanotubes</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Friddle, Raymond W ; Lemieux, Melburne C ; Noy, Aleksandr ; Cicero, Giancarlo ; Artyukhin, Alexander B ; Tsukruk, Vladimir V ; Grossman, Jeffrey C ; Galli, Giulia</creator><creatorcontrib>Friddle, Raymond W ; Lemieux, Melburne C ; Noy, Aleksandr ; Cicero, Giancarlo ; Artyukhin, Alexander B ; Tsukruk, Vladimir V ; Grossman, Jeffrey C ; Galli, Giulia</creatorcontrib><description>Carbon nanotubes 1 display a consummate blend of materials properties that affect applications ranging from nanoelectronic circuits 2 and biosensors 3 to field emitters 4 and membranes 5 . These applications use the non-covalent interactions between the nanotubes and chemical functionalities 6 , often involving a few molecules at a time. Despite their wide use, we still lack a fundamental understanding and molecular-level control of these interactions. We have used chemical force microscopy 7 to measure the strength of the interactions of single chemical functional groups with the sidewalls of vapour-grown individual single-walled carbon nanotubes. Surprisingly, the interaction strength does not follow conventional trends of increasing polarity or hydrophobicity, and instead reflects the complex electronic interactions between the nanotube and the functional group. Ab initio calculations confirm the observed trends and predict binding force distributions for a single molecular contact that match the experimental results. Our analysis also reveals the important role of molecular linkage dynamics in determining interaction strength at the single functional group level.</description><identifier>ISSN: 1748-3387</identifier><identifier>EISSN: 1748-3395</identifier><identifier>DOI: 10.1038/nnano.2007.334</identifier><identifier>PMID: 18654407</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Biosensors ; Carbon ; Chemistry and Materials Science ; Crystallization - methods ; letter ; Macromolecular Substances - chemistry ; Materials Science ; Materials Testing ; Models, Chemical ; Models, Molecular ; Molecular Conformation ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Nanotechnology ; Nanotechnology - methods ; Nanotechnology and Microengineering ; Particle Size ; Surface Properties ; Titanium - chemistry</subject><ispartof>Nature nanotechnology, 2007-11, Vol.2 (11), p.692-697</ispartof><rights>Springer Nature Limited 2007</rights><rights>Copyright Nature Publishing Group Nov 2007</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-e520fb853e1fe6a4f5388a04c3a5081ccfd9d0c2e6c8cddc3bf0f9bec39461ec3</citedby><cites>FETCH-LOGICAL-c389t-e520fb853e1fe6a4f5388a04c3a5081ccfd9d0c2e6c8cddc3bf0f9bec39461ec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nnano.2007.334$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nnano.2007.334$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,2726,27923,27924,41487,42556,51318</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18654407$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Friddle, Raymond W</creatorcontrib><creatorcontrib>Lemieux, Melburne C</creatorcontrib><creatorcontrib>Noy, Aleksandr</creatorcontrib><creatorcontrib>Cicero, Giancarlo</creatorcontrib><creatorcontrib>Artyukhin, Alexander B</creatorcontrib><creatorcontrib>Tsukruk, Vladimir V</creatorcontrib><creatorcontrib>Grossman, Jeffrey C</creatorcontrib><creatorcontrib>Galli, Giulia</creatorcontrib><title>Single functional group interactions with individual carbon nanotubes</title><title>Nature nanotechnology</title><addtitle>Nature Nanotech</addtitle><addtitle>Nat Nanotechnol</addtitle><description>Carbon nanotubes 1 display a consummate blend of materials properties that affect applications ranging from nanoelectronic circuits 2 and biosensors 3 to field emitters 4 and membranes 5 . These applications use the non-covalent interactions between the nanotubes and chemical functionalities 6 , often involving a few molecules at a time. Despite their wide use, we still lack a fundamental understanding and molecular-level control of these interactions. We have used chemical force microscopy 7 to measure the strength of the interactions of single chemical functional groups with the sidewalls of vapour-grown individual single-walled carbon nanotubes. Surprisingly, the interaction strength does not follow conventional trends of increasing polarity or hydrophobicity, and instead reflects the complex electronic interactions between the nanotube and the functional group. Ab initio calculations confirm the observed trends and predict binding force distributions for a single molecular contact that match the experimental results. Our analysis also reveals the important role of molecular linkage dynamics in determining interaction strength at the single functional group level.</description><subject>Biosensors</subject><subject>Carbon</subject><subject>Chemistry and Materials Science</subject><subject>Crystallization - methods</subject><subject>letter</subject><subject>Macromolecular Substances - chemistry</subject><subject>Materials Science</subject><subject>Materials Testing</subject><subject>Models, Chemical</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Nanotechnology</subject><subject>Nanotechnology - methods</subject><subject>Nanotechnology and Microengineering</subject><subject>Particle Size</subject><subject>Surface Properties</subject><subject>Titanium - chemistry</subject><issn>1748-3387</issn><issn>1748-3395</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kM9LwzAUx4Mobk6vHqWIeGuXNOmaHmXMHzDwoJ5DmiYzo0tm0ij-92br2GDg6YWXz_s-3geAawQzBDEdG8ONzXIIywxjcgKGqCQ0xbgqTvdvWg7AhfdLCIu8ysk5GCA6KQiB5RDM3rRZtDJRwYhOW8PbZOFsWCfadNLxbc8nP7r7jJ1Gf-smRERwV1uTbHZ3oZb-Epwp3np5tasj8PE4e58-p_PXp5fpwzwVmFZdKoscqpoWWCIlJ5yoAlPKIRGYF5AiIVRTNVDkciKoaBqBawVVVUuBKzJBsYzAfZ-7dvYrSN-xlfZCti030gbPSogwwTmN4O0RuLTBxes8oyUqKSE5iVDWQ8JZ751UbO30irtfhiDb2GVbu2xjl0W7ceBmlxrqlWwO-E5nBMY94OOXWUh3WPtv5F0_YXgXnNxHHmF_NDKUIg</recordid><startdate>20071101</startdate><enddate>20071101</enddate><creator>Friddle, Raymond W</creator><creator>Lemieux, Melburne C</creator><creator>Noy, Aleksandr</creator><creator>Cicero, Giancarlo</creator><creator>Artyukhin, Alexander B</creator><creator>Tsukruk, Vladimir V</creator><creator>Grossman, Jeffrey C</creator><creator>Galli, Giulia</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope></search><sort><creationdate>20071101</creationdate><title>Single functional group interactions with individual carbon nanotubes</title><author>Friddle, Raymond W ; Lemieux, Melburne C ; Noy, Aleksandr ; Cicero, Giancarlo ; Artyukhin, Alexander B ; Tsukruk, Vladimir V ; Grossman, Jeffrey C ; Galli, Giulia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-e520fb853e1fe6a4f5388a04c3a5081ccfd9d0c2e6c8cddc3bf0f9bec39461ec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Biosensors</topic><topic>Carbon</topic><topic>Chemistry and Materials Science</topic><topic>Crystallization - methods</topic><topic>letter</topic><topic>Macromolecular Substances - chemistry</topic><topic>Materials Science</topic><topic>Materials Testing</topic><topic>Models, Chemical</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Nanotechnology</topic><topic>Nanotechnology - methods</topic><topic>Nanotechnology and Microengineering</topic><topic>Particle Size</topic><topic>Surface Properties</topic><topic>Titanium - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Friddle, Raymond W</creatorcontrib><creatorcontrib>Lemieux, Melburne C</creatorcontrib><creatorcontrib>Noy, Aleksandr</creatorcontrib><creatorcontrib>Cicero, Giancarlo</creatorcontrib><creatorcontrib>Artyukhin, Alexander B</creatorcontrib><creatorcontrib>Tsukruk, Vladimir V</creatorcontrib><creatorcontrib>Grossman, Jeffrey C</creatorcontrib><creatorcontrib>Galli, Giulia</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Nature nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Friddle, Raymond W</au><au>Lemieux, Melburne C</au><au>Noy, Aleksandr</au><au>Cicero, Giancarlo</au><au>Artyukhin, Alexander B</au><au>Tsukruk, Vladimir V</au><au>Grossman, Jeffrey C</au><au>Galli, Giulia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single functional group interactions with individual carbon nanotubes</atitle><jtitle>Nature nanotechnology</jtitle><stitle>Nature Nanotech</stitle><addtitle>Nat Nanotechnol</addtitle><date>2007-11-01</date><risdate>2007</risdate><volume>2</volume><issue>11</issue><spage>692</spage><epage>697</epage><pages>692-697</pages><issn>1748-3387</issn><eissn>1748-3395</eissn><abstract>Carbon nanotubes 1 display a consummate blend of materials properties that affect applications ranging from nanoelectronic circuits 2 and biosensors 3 to field emitters 4 and membranes 5 . These applications use the non-covalent interactions between the nanotubes and chemical functionalities 6 , often involving a few molecules at a time. Despite their wide use, we still lack a fundamental understanding and molecular-level control of these interactions. We have used chemical force microscopy 7 to measure the strength of the interactions of single chemical functional groups with the sidewalls of vapour-grown individual single-walled carbon nanotubes. Surprisingly, the interaction strength does not follow conventional trends of increasing polarity or hydrophobicity, and instead reflects the complex electronic interactions between the nanotube and the functional group. Ab initio calculations confirm the observed trends and predict binding force distributions for a single molecular contact that match the experimental results. Our analysis also reveals the important role of molecular linkage dynamics in determining interaction strength at the single functional group level.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>18654407</pmid><doi>10.1038/nnano.2007.334</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1748-3387
ispartof Nature nanotechnology, 2007-11, Vol.2 (11), p.692-697
issn 1748-3387
1748-3395
language eng
recordid cdi_proquest_miscellaneous_70134328
source MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects Biosensors
Carbon
Chemistry and Materials Science
Crystallization - methods
letter
Macromolecular Substances - chemistry
Materials Science
Materials Testing
Models, Chemical
Models, Molecular
Molecular Conformation
Nanostructures - chemistry
Nanostructures - ultrastructure
Nanotechnology
Nanotechnology - methods
Nanotechnology and Microengineering
Particle Size
Surface Properties
Titanium - chemistry
title Single functional group interactions with individual carbon nanotubes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A14%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single%20functional%20group%20interactions%20with%20individual%20carbon%20nanotubes&rft.jtitle=Nature%20nanotechnology&rft.au=Friddle,%20Raymond%20W&rft.date=2007-11-01&rft.volume=2&rft.issue=11&rft.spage=692&rft.epage=697&rft.pages=692-697&rft.issn=1748-3387&rft.eissn=1748-3395&rft_id=info:doi/10.1038/nnano.2007.334&rft_dat=%3Cproquest_cross%3E70134328%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=871784424&rft_id=info:pmid/18654407&rfr_iscdi=true