Product formation kinetics in genetically modified E. coli bacteria: inclusion body formation
A data-driven model is presented that can serve two important purposes. First, the specific growth rate and the specific product formation rate are determined as a function of time and thus the dependency of the specific product formation rate from the specific biomass growth rate. The results appea...
Gespeichert in:
Veröffentlicht in: | Bioprocess and biosystems engineering 2008, Vol.31 (1), p.41-46 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 46 |
---|---|
container_issue | 1 |
container_start_page | 41 |
container_title | Bioprocess and biosystems engineering |
container_volume | 31 |
creator | Gnoth, Stefan Jenzsch, Marco Simutis, Rimvydas Lübbert, Andreas |
description | A data-driven model is presented that can serve two important purposes. First, the specific growth rate and the specific product formation rate are determined as a function of time and thus the dependency of the specific product formation rate from the specific biomass growth rate. The results appear in form of trained artificial neural networks from which concrete values can easily be computed. The second purpose is using these results for online estimation of current values for the most important state variables of the fermentation process. One only needs online data of the total carbon dioxide production rate (tCPR) produced and an initial value
x
of the biomass, i.e., the size of the inoculum, for model evaluation. Hence, given the inoculum size and online values of tCPR, the model can directly be employed as a softsensor for the actual value of the biomass, the product mass as well as the specific biomass growth rate and the specific product formation rate. In this paper the method is applied to fermentation experiments on the laboratory scale with an
E. coli
strain producing a recombinant protein that appears in form of inclusion bodies within the cells’ cytoplasm. |
doi_str_mv | 10.1007/s00449-007-0161-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70104112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1897557821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-f1e26e2e756eea2ff1b4d99146b48fc91c6228cd314558acd0c8fab2290001713</originalsourceid><addsrcrecordid>eNqFkUtLAzEUhYMotlZ_gBsZXLgbvTedV9xJqQ8o6EKXMmTyKKkzk5rMLPrvzdhKQRBX90C-e8K5h5BzhGsEyG88QJKwOMgYMMOYHZBxmGmcZ5Ae_uiU4YiceL8CwLSgcExGmDPKIIMxeX9xVvaii7R1De-MbaMP06rOCB-ZNlqqb83rehM1VhptlIzm15GwtYkqLjrlDL8NpKh7PyxXVm72XqfkSPPaq7PdnJC3-_nr7DFePD88ze4WsUgAulijopmiKk8zpTjVGqtEMoZJViWFFgxFRmkh5BSTNC24kCAKzSsaMoRMOU4n5Grru3b2s1e-Kxvjhapr3irb-zIHhASR_gtSnIZr5gN4-Qtc2d61IURg0qLIWTFAuIWEs947pcu1Mw13mxKhHBoqtw2VgxwaKlnYudgZ91Wj5H5jV0kA6Bbw4aldKrf_-W_XL07fmyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215887982</pqid></control><display><type>article</type><title>Product formation kinetics in genetically modified E. coli bacteria: inclusion body formation</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Gnoth, Stefan ; Jenzsch, Marco ; Simutis, Rimvydas ; Lübbert, Andreas</creator><creatorcontrib>Gnoth, Stefan ; Jenzsch, Marco ; Simutis, Rimvydas ; Lübbert, Andreas</creatorcontrib><description>A data-driven model is presented that can serve two important purposes. First, the specific growth rate and the specific product formation rate are determined as a function of time and thus the dependency of the specific product formation rate from the specific biomass growth rate. The results appear in form of trained artificial neural networks from which concrete values can easily be computed. The second purpose is using these results for online estimation of current values for the most important state variables of the fermentation process. One only needs online data of the total carbon dioxide production rate (tCPR) produced and an initial value
x
of the biomass, i.e., the size of the inoculum, for model evaluation. Hence, given the inoculum size and online values of tCPR, the model can directly be employed as a softsensor for the actual value of the biomass, the product mass as well as the specific biomass growth rate and the specific product formation rate. In this paper the method is applied to fermentation experiments on the laboratory scale with an
E. coli
strain producing a recombinant protein that appears in form of inclusion bodies within the cells’ cytoplasm.</description><identifier>ISSN: 1615-7591</identifier><identifier>EISSN: 1615-7605</identifier><identifier>DOI: 10.1007/s00449-007-0161-9</identifier><identifier>PMID: 17929060</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Bioengineering ; Biomass ; Biotechnology ; Carbon dioxide ; Chemistry ; Chemistry and Materials Science ; E coli ; Environmental Engineering/Biotechnology ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Fermentation ; Food Science ; Genetic Engineering ; Industrial and Production Engineering ; Industrial Chemistry/Chemical Engineering ; Kinetics ; Neural networks ; Original Paper</subject><ispartof>Bioprocess and biosystems engineering, 2008, Vol.31 (1), p.41-46</ispartof><rights>Springer-Verlag 2007</rights><rights>Springer-Verlag 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-f1e26e2e756eea2ff1b4d99146b48fc91c6228cd314558acd0c8fab2290001713</citedby><cites>FETCH-LOGICAL-c400t-f1e26e2e756eea2ff1b4d99146b48fc91c6228cd314558acd0c8fab2290001713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00449-007-0161-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00449-007-0161-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17929060$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gnoth, Stefan</creatorcontrib><creatorcontrib>Jenzsch, Marco</creatorcontrib><creatorcontrib>Simutis, Rimvydas</creatorcontrib><creatorcontrib>Lübbert, Andreas</creatorcontrib><title>Product formation kinetics in genetically modified E. coli bacteria: inclusion body formation</title><title>Bioprocess and biosystems engineering</title><addtitle>Bioprocess Biosyst Eng</addtitle><addtitle>Bioprocess Biosyst Eng</addtitle><description>A data-driven model is presented that can serve two important purposes. First, the specific growth rate and the specific product formation rate are determined as a function of time and thus the dependency of the specific product formation rate from the specific biomass growth rate. The results appear in form of trained artificial neural networks from which concrete values can easily be computed. The second purpose is using these results for online estimation of current values for the most important state variables of the fermentation process. One only needs online data of the total carbon dioxide production rate (tCPR) produced and an initial value
x
of the biomass, i.e., the size of the inoculum, for model evaluation. Hence, given the inoculum size and online values of tCPR, the model can directly be employed as a softsensor for the actual value of the biomass, the product mass as well as the specific biomass growth rate and the specific product formation rate. In this paper the method is applied to fermentation experiments on the laboratory scale with an
E. coli
strain producing a recombinant protein that appears in form of inclusion bodies within the cells’ cytoplasm.</description><subject>Bioengineering</subject><subject>Biomass</subject><subject>Biotechnology</subject><subject>Carbon dioxide</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>E coli</subject><subject>Environmental Engineering/Biotechnology</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Fermentation</subject><subject>Food Science</subject><subject>Genetic Engineering</subject><subject>Industrial and Production Engineering</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Kinetics</subject><subject>Neural networks</subject><subject>Original Paper</subject><issn>1615-7591</issn><issn>1615-7605</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkUtLAzEUhYMotlZ_gBsZXLgbvTedV9xJqQ8o6EKXMmTyKKkzk5rMLPrvzdhKQRBX90C-e8K5h5BzhGsEyG88QJKwOMgYMMOYHZBxmGmcZ5Ae_uiU4YiceL8CwLSgcExGmDPKIIMxeX9xVvaii7R1De-MbaMP06rOCB-ZNlqqb83rehM1VhptlIzm15GwtYkqLjrlDL8NpKh7PyxXVm72XqfkSPPaq7PdnJC3-_nr7DFePD88ze4WsUgAulijopmiKk8zpTjVGqtEMoZJViWFFgxFRmkh5BSTNC24kCAKzSsaMoRMOU4n5Grru3b2s1e-Kxvjhapr3irb-zIHhASR_gtSnIZr5gN4-Qtc2d61IURg0qLIWTFAuIWEs947pcu1Mw13mxKhHBoqtw2VgxwaKlnYudgZ91Wj5H5jV0kA6Bbw4aldKrf_-W_XL07fmyA</recordid><startdate>2008</startdate><enddate>2008</enddate><creator>Gnoth, Stefan</creator><creator>Jenzsch, Marco</creator><creator>Simutis, Rimvydas</creator><creator>Lübbert, Andreas</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7QO</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>2008</creationdate><title>Product formation kinetics in genetically modified E. coli bacteria: inclusion body formation</title><author>Gnoth, Stefan ; Jenzsch, Marco ; Simutis, Rimvydas ; Lübbert, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-f1e26e2e756eea2ff1b4d99146b48fc91c6228cd314558acd0c8fab2290001713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Bioengineering</topic><topic>Biomass</topic><topic>Biotechnology</topic><topic>Carbon dioxide</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>E coli</topic><topic>Environmental Engineering/Biotechnology</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Fermentation</topic><topic>Food Science</topic><topic>Genetic Engineering</topic><topic>Industrial and Production Engineering</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Kinetics</topic><topic>Neural networks</topic><topic>Original Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gnoth, Stefan</creatorcontrib><creatorcontrib>Jenzsch, Marco</creatorcontrib><creatorcontrib>Simutis, Rimvydas</creatorcontrib><creatorcontrib>Lübbert, Andreas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Biotechnology Research Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Bioprocess and biosystems engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gnoth, Stefan</au><au>Jenzsch, Marco</au><au>Simutis, Rimvydas</au><au>Lübbert, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Product formation kinetics in genetically modified E. coli bacteria: inclusion body formation</atitle><jtitle>Bioprocess and biosystems engineering</jtitle><stitle>Bioprocess Biosyst Eng</stitle><addtitle>Bioprocess Biosyst Eng</addtitle><date>2008</date><risdate>2008</risdate><volume>31</volume><issue>1</issue><spage>41</spage><epage>46</epage><pages>41-46</pages><issn>1615-7591</issn><eissn>1615-7605</eissn><abstract>A data-driven model is presented that can serve two important purposes. First, the specific growth rate and the specific product formation rate are determined as a function of time and thus the dependency of the specific product formation rate from the specific biomass growth rate. The results appear in form of trained artificial neural networks from which concrete values can easily be computed. The second purpose is using these results for online estimation of current values for the most important state variables of the fermentation process. One only needs online data of the total carbon dioxide production rate (tCPR) produced and an initial value
x
of the biomass, i.e., the size of the inoculum, for model evaluation. Hence, given the inoculum size and online values of tCPR, the model can directly be employed as a softsensor for the actual value of the biomass, the product mass as well as the specific biomass growth rate and the specific product formation rate. In this paper the method is applied to fermentation experiments on the laboratory scale with an
E. coli
strain producing a recombinant protein that appears in form of inclusion bodies within the cells’ cytoplasm.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>17929060</pmid><doi>10.1007/s00449-007-0161-9</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-7591 |
ispartof | Bioprocess and biosystems engineering, 2008, Vol.31 (1), p.41-46 |
issn | 1615-7591 1615-7605 |
language | eng |
recordid | cdi_proquest_miscellaneous_70104112 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Bioengineering Biomass Biotechnology Carbon dioxide Chemistry Chemistry and Materials Science E coli Environmental Engineering/Biotechnology Escherichia coli Escherichia coli - genetics Escherichia coli - metabolism Fermentation Food Science Genetic Engineering Industrial and Production Engineering Industrial Chemistry/Chemical Engineering Kinetics Neural networks Original Paper |
title | Product formation kinetics in genetically modified E. coli bacteria: inclusion body formation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A22%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Product%20formation%20kinetics%20in%20genetically%20modified%20E.%20coli%20bacteria:%20inclusion%20body%20formation&rft.jtitle=Bioprocess%20and%20biosystems%20engineering&rft.au=Gnoth,%20Stefan&rft.date=2008&rft.volume=31&rft.issue=1&rft.spage=41&rft.epage=46&rft.pages=41-46&rft.issn=1615-7591&rft.eissn=1615-7605&rft_id=info:doi/10.1007/s00449-007-0161-9&rft_dat=%3Cproquest_cross%3E1897557821%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215887982&rft_id=info:pmid/17929060&rfr_iscdi=true |