Product formation kinetics in genetically modified E. coli bacteria: inclusion body formation

A data-driven model is presented that can serve two important purposes. First, the specific growth rate and the specific product formation rate are determined as a function of time and thus the dependency of the specific product formation rate from the specific biomass growth rate. The results appea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioprocess and biosystems engineering 2008, Vol.31 (1), p.41-46
Hauptverfasser: Gnoth, Stefan, Jenzsch, Marco, Simutis, Rimvydas, Lübbert, Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 46
container_issue 1
container_start_page 41
container_title Bioprocess and biosystems engineering
container_volume 31
creator Gnoth, Stefan
Jenzsch, Marco
Simutis, Rimvydas
Lübbert, Andreas
description A data-driven model is presented that can serve two important purposes. First, the specific growth rate and the specific product formation rate are determined as a function of time and thus the dependency of the specific product formation rate from the specific biomass growth rate. The results appear in form of trained artificial neural networks from which concrete values can easily be computed. The second purpose is using these results for online estimation of current values for the most important state variables of the fermentation process. One only needs online data of the total carbon dioxide production rate (tCPR) produced and an initial value x of the biomass, i.e., the size of the inoculum, for model evaluation. Hence, given the inoculum size and online values of tCPR, the model can directly be employed as a softsensor for the actual value of the biomass, the product mass as well as the specific biomass growth rate and the specific product formation rate. In this paper the method is applied to fermentation experiments on the laboratory scale with an E. coli strain producing a recombinant protein that appears in form of inclusion bodies within the cells’ cytoplasm.
doi_str_mv 10.1007/s00449-007-0161-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70104112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1897557821</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-f1e26e2e756eea2ff1b4d99146b48fc91c6228cd314558acd0c8fab2290001713</originalsourceid><addsrcrecordid>eNqFkUtLAzEUhYMotlZ_gBsZXLgbvTedV9xJqQ8o6EKXMmTyKKkzk5rMLPrvzdhKQRBX90C-e8K5h5BzhGsEyG88QJKwOMgYMMOYHZBxmGmcZ5Ae_uiU4YiceL8CwLSgcExGmDPKIIMxeX9xVvaii7R1De-MbaMP06rOCB-ZNlqqb83rehM1VhptlIzm15GwtYkqLjrlDL8NpKh7PyxXVm72XqfkSPPaq7PdnJC3-_nr7DFePD88ze4WsUgAulijopmiKk8zpTjVGqtEMoZJViWFFgxFRmkh5BSTNC24kCAKzSsaMoRMOU4n5Grru3b2s1e-Kxvjhapr3irb-zIHhASR_gtSnIZr5gN4-Qtc2d61IURg0qLIWTFAuIWEs947pcu1Mw13mxKhHBoqtw2VgxwaKlnYudgZ91Wj5H5jV0kA6Bbw4aldKrf_-W_XL07fmyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215887982</pqid></control><display><type>article</type><title>Product formation kinetics in genetically modified E. coli bacteria: inclusion body formation</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Gnoth, Stefan ; Jenzsch, Marco ; Simutis, Rimvydas ; Lübbert, Andreas</creator><creatorcontrib>Gnoth, Stefan ; Jenzsch, Marco ; Simutis, Rimvydas ; Lübbert, Andreas</creatorcontrib><description>A data-driven model is presented that can serve two important purposes. First, the specific growth rate and the specific product formation rate are determined as a function of time and thus the dependency of the specific product formation rate from the specific biomass growth rate. The results appear in form of trained artificial neural networks from which concrete values can easily be computed. The second purpose is using these results for online estimation of current values for the most important state variables of the fermentation process. One only needs online data of the total carbon dioxide production rate (tCPR) produced and an initial value x of the biomass, i.e., the size of the inoculum, for model evaluation. Hence, given the inoculum size and online values of tCPR, the model can directly be employed as a softsensor for the actual value of the biomass, the product mass as well as the specific biomass growth rate and the specific product formation rate. In this paper the method is applied to fermentation experiments on the laboratory scale with an E. coli strain producing a recombinant protein that appears in form of inclusion bodies within the cells’ cytoplasm.</description><identifier>ISSN: 1615-7591</identifier><identifier>EISSN: 1615-7605</identifier><identifier>DOI: 10.1007/s00449-007-0161-9</identifier><identifier>PMID: 17929060</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Bioengineering ; Biomass ; Biotechnology ; Carbon dioxide ; Chemistry ; Chemistry and Materials Science ; E coli ; Environmental Engineering/Biotechnology ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Fermentation ; Food Science ; Genetic Engineering ; Industrial and Production Engineering ; Industrial Chemistry/Chemical Engineering ; Kinetics ; Neural networks ; Original Paper</subject><ispartof>Bioprocess and biosystems engineering, 2008, Vol.31 (1), p.41-46</ispartof><rights>Springer-Verlag 2007</rights><rights>Springer-Verlag 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-f1e26e2e756eea2ff1b4d99146b48fc91c6228cd314558acd0c8fab2290001713</citedby><cites>FETCH-LOGICAL-c400t-f1e26e2e756eea2ff1b4d99146b48fc91c6228cd314558acd0c8fab2290001713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00449-007-0161-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00449-007-0161-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17929060$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gnoth, Stefan</creatorcontrib><creatorcontrib>Jenzsch, Marco</creatorcontrib><creatorcontrib>Simutis, Rimvydas</creatorcontrib><creatorcontrib>Lübbert, Andreas</creatorcontrib><title>Product formation kinetics in genetically modified E. coli bacteria: inclusion body formation</title><title>Bioprocess and biosystems engineering</title><addtitle>Bioprocess Biosyst Eng</addtitle><addtitle>Bioprocess Biosyst Eng</addtitle><description>A data-driven model is presented that can serve two important purposes. First, the specific growth rate and the specific product formation rate are determined as a function of time and thus the dependency of the specific product formation rate from the specific biomass growth rate. The results appear in form of trained artificial neural networks from which concrete values can easily be computed. The second purpose is using these results for online estimation of current values for the most important state variables of the fermentation process. One only needs online data of the total carbon dioxide production rate (tCPR) produced and an initial value x of the biomass, i.e., the size of the inoculum, for model evaluation. Hence, given the inoculum size and online values of tCPR, the model can directly be employed as a softsensor for the actual value of the biomass, the product mass as well as the specific biomass growth rate and the specific product formation rate. In this paper the method is applied to fermentation experiments on the laboratory scale with an E. coli strain producing a recombinant protein that appears in form of inclusion bodies within the cells’ cytoplasm.</description><subject>Bioengineering</subject><subject>Biomass</subject><subject>Biotechnology</subject><subject>Carbon dioxide</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>E coli</subject><subject>Environmental Engineering/Biotechnology</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Fermentation</subject><subject>Food Science</subject><subject>Genetic Engineering</subject><subject>Industrial and Production Engineering</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Kinetics</subject><subject>Neural networks</subject><subject>Original Paper</subject><issn>1615-7591</issn><issn>1615-7605</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqFkUtLAzEUhYMotlZ_gBsZXLgbvTedV9xJqQ8o6EKXMmTyKKkzk5rMLPrvzdhKQRBX90C-e8K5h5BzhGsEyG88QJKwOMgYMMOYHZBxmGmcZ5Ae_uiU4YiceL8CwLSgcExGmDPKIIMxeX9xVvaii7R1De-MbaMP06rOCB-ZNlqqb83rehM1VhptlIzm15GwtYkqLjrlDL8NpKh7PyxXVm72XqfkSPPaq7PdnJC3-_nr7DFePD88ze4WsUgAulijopmiKk8zpTjVGqtEMoZJViWFFgxFRmkh5BSTNC24kCAKzSsaMoRMOU4n5Grru3b2s1e-Kxvjhapr3irb-zIHhASR_gtSnIZr5gN4-Qtc2d61IURg0qLIWTFAuIWEs947pcu1Mw13mxKhHBoqtw2VgxwaKlnYudgZ91Wj5H5jV0kA6Bbw4aldKrf_-W_XL07fmyA</recordid><startdate>2008</startdate><enddate>2008</enddate><creator>Gnoth, Stefan</creator><creator>Jenzsch, Marco</creator><creator>Simutis, Rimvydas</creator><creator>Lübbert, Andreas</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7QO</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>2008</creationdate><title>Product formation kinetics in genetically modified E. coli bacteria: inclusion body formation</title><author>Gnoth, Stefan ; Jenzsch, Marco ; Simutis, Rimvydas ; Lübbert, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-f1e26e2e756eea2ff1b4d99146b48fc91c6228cd314558acd0c8fab2290001713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Bioengineering</topic><topic>Biomass</topic><topic>Biotechnology</topic><topic>Carbon dioxide</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>E coli</topic><topic>Environmental Engineering/Biotechnology</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Fermentation</topic><topic>Food Science</topic><topic>Genetic Engineering</topic><topic>Industrial and Production Engineering</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Kinetics</topic><topic>Neural networks</topic><topic>Original Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gnoth, Stefan</creatorcontrib><creatorcontrib>Jenzsch, Marco</creatorcontrib><creatorcontrib>Simutis, Rimvydas</creatorcontrib><creatorcontrib>Lübbert, Andreas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Biotechnology Research Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Bioprocess and biosystems engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gnoth, Stefan</au><au>Jenzsch, Marco</au><au>Simutis, Rimvydas</au><au>Lübbert, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Product formation kinetics in genetically modified E. coli bacteria: inclusion body formation</atitle><jtitle>Bioprocess and biosystems engineering</jtitle><stitle>Bioprocess Biosyst Eng</stitle><addtitle>Bioprocess Biosyst Eng</addtitle><date>2008</date><risdate>2008</risdate><volume>31</volume><issue>1</issue><spage>41</spage><epage>46</epage><pages>41-46</pages><issn>1615-7591</issn><eissn>1615-7605</eissn><abstract>A data-driven model is presented that can serve two important purposes. First, the specific growth rate and the specific product formation rate are determined as a function of time and thus the dependency of the specific product formation rate from the specific biomass growth rate. The results appear in form of trained artificial neural networks from which concrete values can easily be computed. The second purpose is using these results for online estimation of current values for the most important state variables of the fermentation process. One only needs online data of the total carbon dioxide production rate (tCPR) produced and an initial value x of the biomass, i.e., the size of the inoculum, for model evaluation. Hence, given the inoculum size and online values of tCPR, the model can directly be employed as a softsensor for the actual value of the biomass, the product mass as well as the specific biomass growth rate and the specific product formation rate. In this paper the method is applied to fermentation experiments on the laboratory scale with an E. coli strain producing a recombinant protein that appears in form of inclusion bodies within the cells’ cytoplasm.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>17929060</pmid><doi>10.1007/s00449-007-0161-9</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1615-7591
ispartof Bioprocess and biosystems engineering, 2008, Vol.31 (1), p.41-46
issn 1615-7591
1615-7605
language eng
recordid cdi_proquest_miscellaneous_70104112
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Bioengineering
Biomass
Biotechnology
Carbon dioxide
Chemistry
Chemistry and Materials Science
E coli
Environmental Engineering/Biotechnology
Escherichia coli
Escherichia coli - genetics
Escherichia coli - metabolism
Fermentation
Food Science
Genetic Engineering
Industrial and Production Engineering
Industrial Chemistry/Chemical Engineering
Kinetics
Neural networks
Original Paper
title Product formation kinetics in genetically modified E. coli bacteria: inclusion body formation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T09%3A22%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Product%20formation%20kinetics%20in%20genetically%20modified%20E.%20coli%20bacteria:%20inclusion%20body%20formation&rft.jtitle=Bioprocess%20and%20biosystems%20engineering&rft.au=Gnoth,%20Stefan&rft.date=2008&rft.volume=31&rft.issue=1&rft.spage=41&rft.epage=46&rft.pages=41-46&rft.issn=1615-7591&rft.eissn=1615-7605&rft_id=info:doi/10.1007/s00449-007-0161-9&rft_dat=%3Cproquest_cross%3E1897557821%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215887982&rft_id=info:pmid/17929060&rfr_iscdi=true