Information-theoretic sensitivity analysis: a general method for credit assignment in complex networks

Most systems can be represented as networks that couple a series of nodes to each other via one or more edges, with typically unknown equations governing their quantitative behaviour. A major question then pertains to the importance of each of the elements that act as system inputs in determining th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Society interface 2008-02, Vol.5 (19), p.223-235
Hauptverfasser: Lüdtke, Niklas, Panzeri, Stefano, Brown, Martin, Broomhead, David S, Knowles, Joshua, Montemurro, Marcelo A, Kell, Douglas B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 235
container_issue 19
container_start_page 223
container_title Journal of the Royal Society interface
container_volume 5
creator Lüdtke, Niklas
Panzeri, Stefano
Brown, Martin
Broomhead, David S
Knowles, Joshua
Montemurro, Marcelo A
Kell, Douglas B
description Most systems can be represented as networks that couple a series of nodes to each other via one or more edges, with typically unknown equations governing their quantitative behaviour. A major question then pertains to the importance of each of the elements that act as system inputs in determining the output(s). We show that any such system can be treated as a 'communication channel' for which the associations between inputs and outputs can be quantified via a decomposition of their mutual information into different components characterizing the main effect of individual inputs and their interactions. Unlike variance-based approaches, our novel methodology can easily accommodate correlated inputs.
doi_str_mv 10.1098/rsif.2007.1079
format Article
fullrecord <record><control><sourceid>proquest_istex</sourceid><recordid>TN_cdi_proquest_miscellaneous_70099992</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70099992</sourcerecordid><originalsourceid>FETCH-LOGICAL-c631t-8418c5bd44a8cdc564f17be175f098921761832dc941ee8acf9c808280c51143</originalsourceid><addsrcrecordid>eNp9UU1v1DAQjRCIlsKVI_KJWxZ_5MMBCQkVCkWVEKjiwGXkdca7bhN7a3vb5t_jVVYLPYAv9sjvvXkzryheMrpgtJNvQrRmwSltc9l2j4pj1la8rJuGPz68ZXdUPIvxilLRirp-Whyxtu6qrmHHhTl3xodRJetdmdboAyarSUQXbbK3Nk1EOTVM0ca3RJEVOgxqICOmte9JphIdsLeJqBjtyo3oErGOaD9uBrwnDtOdD9fxefHEqCHii_19Ulyefbo8_VJefPt8fvrhotSNYKmUFZO6XvZVpaTudd1UhrVLzHZNHrbjrG2YFLzXXcUQpdKm05JKLqmuGavESfF-lt1slyP2OrvJbmET7KjCBF5ZePjj7BpW_ha4kE3dsCzwei8Q_M0WY4LRRo3DoBz6bYSW0i4fnoGLGaiDjzGgOTRhFHbJwC4Z2CUDu2Qy4dXf1v7A91FkgJgBwU95RV5bTBNc-W3I-4__li1nlo0J7w-qKlxD04q2hp-ygh_fxddflfwIZxnPZ_zartZ3NiA8aJcL6xIGozRCDawDzkUmvfsvaWdJ-8xz6UACsx3y5nsjfgNtS9b_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70099992</pqid></control><display><type>article</type><title>Information-theoretic sensitivity analysis: a general method for credit assignment in complex networks</title><source>MEDLINE</source><source>PubMed Central</source><creator>Lüdtke, Niklas ; Panzeri, Stefano ; Brown, Martin ; Broomhead, David S ; Knowles, Joshua ; Montemurro, Marcelo A ; Kell, Douglas B</creator><creatorcontrib>Lüdtke, Niklas ; Panzeri, Stefano ; Brown, Martin ; Broomhead, David S ; Knowles, Joshua ; Montemurro, Marcelo A ; Kell, Douglas B</creatorcontrib><description>Most systems can be represented as networks that couple a series of nodes to each other via one or more edges, with typically unknown equations governing their quantitative behaviour. A major question then pertains to the importance of each of the elements that act as system inputs in determining the output(s). We show that any such system can be treated as a 'communication channel' for which the associations between inputs and outputs can be quantified via a decomposition of their mutual information into different components characterizing the main effect of individual inputs and their interactions. Unlike variance-based approaches, our novel methodology can easily accommodate correlated inputs.</description><identifier>ISSN: 1742-5689</identifier><identifier>EISSN: 1742-5662</identifier><identifier>DOI: 10.1098/rsif.2007.1079</identifier><identifier>PMID: 17594961</identifier><language>eng</language><publisher>London: The Royal Society</publisher><subject>Communication Channel ; Computer Simulation ; Entropy ; Information Theory ; Models, Biological ; Monte Carlo Method ; Mutual Information ; NF-kappa B - metabolism ; NFκB ; Research Article ; Sensitivity Analysis ; Sensitivity and Specificity ; Signal Transduction ; Systems Biology - methods</subject><ispartof>Journal of the Royal Society interface, 2008-02, Vol.5 (19), p.223-235</ispartof><rights>Copyright © 2007 The Royal Society</rights><rights>Copyright © 2007 The Royal Society 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c631t-8418c5bd44a8cdc564f17be175f098921761832dc941ee8acf9c808280c51143</citedby><cites>FETCH-LOGICAL-c631t-8418c5bd44a8cdc564f17be175f098921761832dc941ee8acf9c808280c51143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2386561/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2386561/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17594961$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lüdtke, Niklas</creatorcontrib><creatorcontrib>Panzeri, Stefano</creatorcontrib><creatorcontrib>Brown, Martin</creatorcontrib><creatorcontrib>Broomhead, David S</creatorcontrib><creatorcontrib>Knowles, Joshua</creatorcontrib><creatorcontrib>Montemurro, Marcelo A</creatorcontrib><creatorcontrib>Kell, Douglas B</creatorcontrib><title>Information-theoretic sensitivity analysis: a general method for credit assignment in complex networks</title><title>Journal of the Royal Society interface</title><addtitle>J R Soc Interface</addtitle><description>Most systems can be represented as networks that couple a series of nodes to each other via one or more edges, with typically unknown equations governing their quantitative behaviour. A major question then pertains to the importance of each of the elements that act as system inputs in determining the output(s). We show that any such system can be treated as a 'communication channel' for which the associations between inputs and outputs can be quantified via a decomposition of their mutual information into different components characterizing the main effect of individual inputs and their interactions. Unlike variance-based approaches, our novel methodology can easily accommodate correlated inputs.</description><subject>Communication Channel</subject><subject>Computer Simulation</subject><subject>Entropy</subject><subject>Information Theory</subject><subject>Models, Biological</subject><subject>Monte Carlo Method</subject><subject>Mutual Information</subject><subject>NF-kappa B - metabolism</subject><subject>NFκB</subject><subject>Research Article</subject><subject>Sensitivity Analysis</subject><subject>Sensitivity and Specificity</subject><subject>Signal Transduction</subject><subject>Systems Biology - methods</subject><issn>1742-5689</issn><issn>1742-5662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9UU1v1DAQjRCIlsKVI_KJWxZ_5MMBCQkVCkWVEKjiwGXkdca7bhN7a3vb5t_jVVYLPYAv9sjvvXkzryheMrpgtJNvQrRmwSltc9l2j4pj1la8rJuGPz68ZXdUPIvxilLRirp-Whyxtu6qrmHHhTl3xodRJetdmdboAyarSUQXbbK3Nk1EOTVM0ca3RJEVOgxqICOmte9JphIdsLeJqBjtyo3oErGOaD9uBrwnDtOdD9fxefHEqCHii_19Ulyefbo8_VJefPt8fvrhotSNYKmUFZO6XvZVpaTudd1UhrVLzHZNHrbjrG2YFLzXXcUQpdKm05JKLqmuGavESfF-lt1slyP2OrvJbmET7KjCBF5ZePjj7BpW_ha4kE3dsCzwei8Q_M0WY4LRRo3DoBz6bYSW0i4fnoGLGaiDjzGgOTRhFHbJwC4Z2CUDu2Qy4dXf1v7A91FkgJgBwU95RV5bTBNc-W3I-4__li1nlo0J7w-qKlxD04q2hp-ygh_fxddflfwIZxnPZ_zartZ3NiA8aJcL6xIGozRCDawDzkUmvfsvaWdJ-8xz6UACsx3y5nsjfgNtS9b_</recordid><startdate>20080206</startdate><enddate>20080206</enddate><creator>Lüdtke, Niklas</creator><creator>Panzeri, Stefano</creator><creator>Brown, Martin</creator><creator>Broomhead, David S</creator><creator>Knowles, Joshua</creator><creator>Montemurro, Marcelo A</creator><creator>Kell, Douglas B</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20080206</creationdate><title>Information-theoretic sensitivity analysis: a general method for credit assignment in complex networks</title><author>Lüdtke, Niklas ; Panzeri, Stefano ; Brown, Martin ; Broomhead, David S ; Knowles, Joshua ; Montemurro, Marcelo A ; Kell, Douglas B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c631t-8418c5bd44a8cdc564f17be175f098921761832dc941ee8acf9c808280c51143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Communication Channel</topic><topic>Computer Simulation</topic><topic>Entropy</topic><topic>Information Theory</topic><topic>Models, Biological</topic><topic>Monte Carlo Method</topic><topic>Mutual Information</topic><topic>NF-kappa B - metabolism</topic><topic>NFκB</topic><topic>Research Article</topic><topic>Sensitivity Analysis</topic><topic>Sensitivity and Specificity</topic><topic>Signal Transduction</topic><topic>Systems Biology - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lüdtke, Niklas</creatorcontrib><creatorcontrib>Panzeri, Stefano</creatorcontrib><creatorcontrib>Brown, Martin</creatorcontrib><creatorcontrib>Broomhead, David S</creatorcontrib><creatorcontrib>Knowles, Joshua</creatorcontrib><creatorcontrib>Montemurro, Marcelo A</creatorcontrib><creatorcontrib>Kell, Douglas B</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the Royal Society interface</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lüdtke, Niklas</au><au>Panzeri, Stefano</au><au>Brown, Martin</au><au>Broomhead, David S</au><au>Knowles, Joshua</au><au>Montemurro, Marcelo A</au><au>Kell, Douglas B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Information-theoretic sensitivity analysis: a general method for credit assignment in complex networks</atitle><jtitle>Journal of the Royal Society interface</jtitle><addtitle>J R Soc Interface</addtitle><date>2008-02-06</date><risdate>2008</risdate><volume>5</volume><issue>19</issue><spage>223</spage><epage>235</epage><pages>223-235</pages><issn>1742-5689</issn><eissn>1742-5662</eissn><abstract>Most systems can be represented as networks that couple a series of nodes to each other via one or more edges, with typically unknown equations governing their quantitative behaviour. A major question then pertains to the importance of each of the elements that act as system inputs in determining the output(s). We show that any such system can be treated as a 'communication channel' for which the associations between inputs and outputs can be quantified via a decomposition of their mutual information into different components characterizing the main effect of individual inputs and their interactions. Unlike variance-based approaches, our novel methodology can easily accommodate correlated inputs.</abstract><cop>London</cop><pub>The Royal Society</pub><pmid>17594961</pmid><doi>10.1098/rsif.2007.1079</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-5689
ispartof Journal of the Royal Society interface, 2008-02, Vol.5 (19), p.223-235
issn 1742-5689
1742-5662
language eng
recordid cdi_proquest_miscellaneous_70099992
source MEDLINE; PubMed Central
subjects Communication Channel
Computer Simulation
Entropy
Information Theory
Models, Biological
Monte Carlo Method
Mutual Information
NF-kappa B - metabolism
NFκB
Research Article
Sensitivity Analysis
Sensitivity and Specificity
Signal Transduction
Systems Biology - methods
title Information-theoretic sensitivity analysis: a general method for credit assignment in complex networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A50%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_istex&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Information-theoretic%20sensitivity%20analysis:%20a%20general%20method%20for%20credit%20assignment%20in%20complex%20networks&rft.jtitle=Journal%20of%20the%20Royal%20Society%20interface&rft.au=L%C3%BCdtke,%20Niklas&rft.date=2008-02-06&rft.volume=5&rft.issue=19&rft.spage=223&rft.epage=235&rft.pages=223-235&rft.issn=1742-5689&rft.eissn=1742-5662&rft_id=info:doi/10.1098/rsif.2007.1079&rft_dat=%3Cproquest_istex%3E70099992%3C/proquest_istex%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70099992&rft_id=info:pmid/17594961&rfr_iscdi=true