A theoretical study of hydrodynamic cavitation

The optimization of hydrodynamic cavitation as an AOP requires identifying the key parameters and studying their effects on the process. Specific simulations of hydrodynamic bubbles reveal that time scales play a major role on the process. Rarefaction/compression periods generate a number of opposin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ultrasonics sonochemistry 2008-03, Vol.15 (3), p.203-211
Hauptverfasser: Arrojo, S., Benito, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 211
container_issue 3
container_start_page 203
container_title Ultrasonics sonochemistry
container_volume 15
creator Arrojo, S.
Benito, Y.
description The optimization of hydrodynamic cavitation as an AOP requires identifying the key parameters and studying their effects on the process. Specific simulations of hydrodynamic bubbles reveal that time scales play a major role on the process. Rarefaction/compression periods generate a number of opposing effects which have demonstrated to be quantitatively different from those found in ultrasonic cavitation. Hydrodynamic cavitation can be upscaled and offers an energy efficient way of generating cavitation. On the other hand, the large characteristic time scales hinder bubble collapse and generate a low number of cavitation cycles per unit time. By controlling the pressure pulse through a flexible cavitation chamber design these limitations can be partially compensated. The chemical processes promoted by this technique are also different from those found in ultrasonic cavitation. Properties such as volatility or hydrophobicity determine the potential applicability of HC and therefore have to be taken into account.
doi_str_mv 10.1016/j.ultsonch.2007.03.007
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70091721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1350417707000570</els_id><sourcerecordid>70091721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-3e9f5f59a71c61b3891989b13635823a7f0667a009508946ef9c1a294bb702f33</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhi0EolD4C1UmtoSzncTxRlXxJVVigdlyHFt1lcbFdirl3-OqRYxM7w3Pe6d7EFpgKDDg-nFbjH0MblCbggCwAmiR4gLd4IbRnDSkuUwzrSAvMWMzdBvCFgAoJ3CNZphVlJCS36BimcWNdl5Hq2SfhTh2U-ZMtpk677ppkDurMiUPNspo3XCHrozsg74_5xx9vTx_rt7y9cfr-2q5zlVJScyp5qYyFZcMqxq3tOGYN7zFtKZVQ6hkBuqaSQBeQcPLWhuusCS8bFsGxFA6Rw-nvXvvvkcdotjZoHTfy0G7MQiWqpgRnMD6BCrvQvDaiL23O-kngUEcTYmt-DUljqYEUJEiFRfnC2O7091f7awmAU8nQKc_D1Z7EZTVg9Kd9VpF0Tn7340fNlB8AA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70091721</pqid></control><display><type>article</type><title>A theoretical study of hydrodynamic cavitation</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Arrojo, S. ; Benito, Y.</creator><creatorcontrib>Arrojo, S. ; Benito, Y.</creatorcontrib><description>The optimization of hydrodynamic cavitation as an AOP requires identifying the key parameters and studying their effects on the process. Specific simulations of hydrodynamic bubbles reveal that time scales play a major role on the process. Rarefaction/compression periods generate a number of opposing effects which have demonstrated to be quantitatively different from those found in ultrasonic cavitation. Hydrodynamic cavitation can be upscaled and offers an energy efficient way of generating cavitation. On the other hand, the large characteristic time scales hinder bubble collapse and generate a low number of cavitation cycles per unit time. By controlling the pressure pulse through a flexible cavitation chamber design these limitations can be partially compensated. The chemical processes promoted by this technique are also different from those found in ultrasonic cavitation. Properties such as volatility or hydrophobicity determine the potential applicability of HC and therefore have to be taken into account.</description><identifier>ISSN: 1350-4177</identifier><identifier>EISSN: 1873-2828</identifier><identifier>DOI: 10.1016/j.ultsonch.2007.03.007</identifier><identifier>PMID: 17532249</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Acoustics ; AOP ; Bubble collapse ; Bubble growth ; Bubbles ; Chemistry - methods ; Computer Simulation ; Equipment Design ; Hydrodynamic cavitation ; Jets ; Models, Chemical ; Models, Theoretical ; Optimization ; Parameters ; Pressure ; Rheology - methods ; Scattering, Radiation ; Surface Properties ; Time Factors ; Time scales ; Ultrasonics</subject><ispartof>Ultrasonics sonochemistry, 2008-03, Vol.15 (3), p.203-211</ispartof><rights>2007 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-3e9f5f59a71c61b3891989b13635823a7f0667a009508946ef9c1a294bb702f33</citedby><cites>FETCH-LOGICAL-c432t-3e9f5f59a71c61b3891989b13635823a7f0667a009508946ef9c1a294bb702f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1350417707000570$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17532249$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Arrojo, S.</creatorcontrib><creatorcontrib>Benito, Y.</creatorcontrib><title>A theoretical study of hydrodynamic cavitation</title><title>Ultrasonics sonochemistry</title><addtitle>Ultrason Sonochem</addtitle><description>The optimization of hydrodynamic cavitation as an AOP requires identifying the key parameters and studying their effects on the process. Specific simulations of hydrodynamic bubbles reveal that time scales play a major role on the process. Rarefaction/compression periods generate a number of opposing effects which have demonstrated to be quantitatively different from those found in ultrasonic cavitation. Hydrodynamic cavitation can be upscaled and offers an energy efficient way of generating cavitation. On the other hand, the large characteristic time scales hinder bubble collapse and generate a low number of cavitation cycles per unit time. By controlling the pressure pulse through a flexible cavitation chamber design these limitations can be partially compensated. The chemical processes promoted by this technique are also different from those found in ultrasonic cavitation. Properties such as volatility or hydrophobicity determine the potential applicability of HC and therefore have to be taken into account.</description><subject>Acoustics</subject><subject>AOP</subject><subject>Bubble collapse</subject><subject>Bubble growth</subject><subject>Bubbles</subject><subject>Chemistry - methods</subject><subject>Computer Simulation</subject><subject>Equipment Design</subject><subject>Hydrodynamic cavitation</subject><subject>Jets</subject><subject>Models, Chemical</subject><subject>Models, Theoretical</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Pressure</subject><subject>Rheology - methods</subject><subject>Scattering, Radiation</subject><subject>Surface Properties</subject><subject>Time Factors</subject><subject>Time scales</subject><subject>Ultrasonics</subject><issn>1350-4177</issn><issn>1873-2828</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkD1PwzAQhi0EolD4C1UmtoSzncTxRlXxJVVigdlyHFt1lcbFdirl3-OqRYxM7w3Pe6d7EFpgKDDg-nFbjH0MblCbggCwAmiR4gLd4IbRnDSkuUwzrSAvMWMzdBvCFgAoJ3CNZphVlJCS36BimcWNdl5Hq2SfhTh2U-ZMtpk677ppkDurMiUPNspo3XCHrozsg74_5xx9vTx_rt7y9cfr-2q5zlVJScyp5qYyFZcMqxq3tOGYN7zFtKZVQ6hkBuqaSQBeQcPLWhuusCS8bFsGxFA6Rw-nvXvvvkcdotjZoHTfy0G7MQiWqpgRnMD6BCrvQvDaiL23O-kngUEcTYmt-DUljqYEUJEiFRfnC2O7091f7awmAU8nQKc_D1Z7EZTVg9Kd9VpF0Tn7340fNlB8AA</recordid><startdate>20080301</startdate><enddate>20080301</enddate><creator>Arrojo, S.</creator><creator>Benito, Y.</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20080301</creationdate><title>A theoretical study of hydrodynamic cavitation</title><author>Arrojo, S. ; Benito, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-3e9f5f59a71c61b3891989b13635823a7f0667a009508946ef9c1a294bb702f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Acoustics</topic><topic>AOP</topic><topic>Bubble collapse</topic><topic>Bubble growth</topic><topic>Bubbles</topic><topic>Chemistry - methods</topic><topic>Computer Simulation</topic><topic>Equipment Design</topic><topic>Hydrodynamic cavitation</topic><topic>Jets</topic><topic>Models, Chemical</topic><topic>Models, Theoretical</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Pressure</topic><topic>Rheology - methods</topic><topic>Scattering, Radiation</topic><topic>Surface Properties</topic><topic>Time Factors</topic><topic>Time scales</topic><topic>Ultrasonics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arrojo, S.</creatorcontrib><creatorcontrib>Benito, Y.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Ultrasonics sonochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arrojo, S.</au><au>Benito, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A theoretical study of hydrodynamic cavitation</atitle><jtitle>Ultrasonics sonochemistry</jtitle><addtitle>Ultrason Sonochem</addtitle><date>2008-03-01</date><risdate>2008</risdate><volume>15</volume><issue>3</issue><spage>203</spage><epage>211</epage><pages>203-211</pages><issn>1350-4177</issn><eissn>1873-2828</eissn><abstract>The optimization of hydrodynamic cavitation as an AOP requires identifying the key parameters and studying their effects on the process. Specific simulations of hydrodynamic bubbles reveal that time scales play a major role on the process. Rarefaction/compression periods generate a number of opposing effects which have demonstrated to be quantitatively different from those found in ultrasonic cavitation. Hydrodynamic cavitation can be upscaled and offers an energy efficient way of generating cavitation. On the other hand, the large characteristic time scales hinder bubble collapse and generate a low number of cavitation cycles per unit time. By controlling the pressure pulse through a flexible cavitation chamber design these limitations can be partially compensated. The chemical processes promoted by this technique are also different from those found in ultrasonic cavitation. Properties such as volatility or hydrophobicity determine the potential applicability of HC and therefore have to be taken into account.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>17532249</pmid><doi>10.1016/j.ultsonch.2007.03.007</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1350-4177
ispartof Ultrasonics sonochemistry, 2008-03, Vol.15 (3), p.203-211
issn 1350-4177
1873-2828
language eng
recordid cdi_proquest_miscellaneous_70091721
source MEDLINE; Elsevier ScienceDirect Journals
subjects Acoustics
AOP
Bubble collapse
Bubble growth
Bubbles
Chemistry - methods
Computer Simulation
Equipment Design
Hydrodynamic cavitation
Jets
Models, Chemical
Models, Theoretical
Optimization
Parameters
Pressure
Rheology - methods
Scattering, Radiation
Surface Properties
Time Factors
Time scales
Ultrasonics
title A theoretical study of hydrodynamic cavitation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T19%3A42%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20theoretical%20study%20of%20hydrodynamic%20cavitation&rft.jtitle=Ultrasonics%20sonochemistry&rft.au=Arrojo,%20S.&rft.date=2008-03-01&rft.volume=15&rft.issue=3&rft.spage=203&rft.epage=211&rft.pages=203-211&rft.issn=1350-4177&rft.eissn=1873-2828&rft_id=info:doi/10.1016/j.ultsonch.2007.03.007&rft_dat=%3Cproquest_cross%3E70091721%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70091721&rft_id=info:pmid/17532249&rft_els_id=S1350417707000570&rfr_iscdi=true