Monocyte chemoattractant protein-1 has prosclerotic effects both in a mouse model of experimental diabetes and in vitro in human mesangial cells

Aims/hypothesis Diabetic nephropathy is characterised by mesangial extracellular matrix accumulation. Monocyte chemoattractant protein-1 (MCP-1), a chemokine promoting monocyte infiltration, is upregulated in the diabetic glomerulus. We performed in vitro and in vivo studies to examine whether MCP-1...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetologia 2008-01, Vol.51 (1), p.198-207
Hauptverfasser: Giunti, S, Tesch, G. H, Pinach, S, Burt, D. J, Cooper, M. E, Cavallo-Perin, P, Camussi, G, Gruden, G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Aims/hypothesis Diabetic nephropathy is characterised by mesangial extracellular matrix accumulation. Monocyte chemoattractant protein-1 (MCP-1), a chemokine promoting monocyte infiltration, is upregulated in the diabetic glomerulus. We performed in vitro and in vivo studies to examine whether MCP-1 may have prosclerotic actions in the setting of diabetes, presumably via its receptor, chemokine (C-C motif) receptor 2 (CCR2), which has been described in mesangial cells. Methods Human mesangial cells were exposed to recombinant human (rh)-MCP-1 (100 ng/ml) for 12, 24 and 48 h and to rh-MCP-1 (10, 100 and 200 ng/ml) for 24 h. Fibronectin, collagen IV and transforming growth factor, beta 1 (TGF-β1) protein levels were measured by ELISA and pericellular polymeric fibronectin levels by western blotting. The intracellular mechanisms were investigated using specific inhibitors for CCR2, nuclear factor kappa B (NF-κB), p38 mitogen-activated protein kinase and protein kinase C, and an anti-TGF-β1 blocking antibody. In both non-diabetic and streptozotocin-induced diabetic mice that were deficient or not in MCP-1, glomerular fibronectin accumulation was examined by immunohistochemistry, while cortical Tgf-β1 (also known as Tgfb1) and fibronectin mRNA and protein levels were examined by real-time PCR and western blotting. Results In mesangial cells, MCP-1 binding to CCR2 induced a 2.5-fold increase in fibronectin protein levels at 24 h followed by a rise in pericellular fibronectin, whereas no changes were seen in collagen IV production. MCP-1-induced fibronectin production was TGF-β1- and NF-κB-dependent. In diabetic mice, loss of MCP-1 diminished glomerular fibronectin protein production and both renal cortical Tgf-β1 and fibronectin mRNA and protein levels. Conclusions/interpretation Our in vitro and in vivo findings indicate a role for the MCP-1/CCR2 system in fibronectin deposition in the diabetic glomerulus, providing a new therapeutic target for diabetic nephropathy.
ISSN:0012-186X
1432-0428
DOI:10.1007/s00125-007-0837-3