Theory of current-driven instability experiments in magnetic Taylor-Couette flows

We consider the linear stability of dissipative magnetic Taylor-Couette flow with imposed toroidal magnetic fields. The inner and outer cylinders can be either insulating or conducting; the inner one rotates, the outer one is stationary. The magnetic Prandtl number can be as small as 10(-5) , approa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2007-11, Vol.76 (5 Pt 2), p.056309-056309, Article 056309
Hauptverfasser: Rüdiger, Günther, Schultz, Manfred, Shalybkov, Dima, Hollerbach, Rainer
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 056309
container_issue 5 Pt 2
container_start_page 056309
container_title Physical review. E, Statistical, nonlinear, and soft matter physics
container_volume 76
creator Rüdiger, Günther
Schultz, Manfred
Shalybkov, Dima
Hollerbach, Rainer
description We consider the linear stability of dissipative magnetic Taylor-Couette flow with imposed toroidal magnetic fields. The inner and outer cylinders can be either insulating or conducting; the inner one rotates, the outer one is stationary. The magnetic Prandtl number can be as small as 10(-5) , approaching realistic liquid-metal values. The magnetic field destabilizes the flow, except for radial profiles of B(phi)(R) close to the current-free solution. The profile with B(in)=B(out) (the most uniform field) is considered in detail. For weak fields the Taylor-Couette flow is stabilized, until for moderately strong fields the m=1 azimuthal mode dramatically destabilizes the flow again so that a maximum value for the critical Reynolds number exists. For sufficiently strong fields (as measured by the Hartmann number) the toroidal field is always unstable, even for the nonrotating case with Re=0 . The electric currents needed to generate the required toroidal fields in laboratory experiments are a few kA if liquid sodium is used, somewhat more if gallium is used. Weaker currents are needed for wider gaps, so a wide-gap apparatus could succeed even with gallium. The critical Reynolds numbers are only somewhat larger than the nonmagnetic values; hence such experiments would work with only modest rotation rates.
doi_str_mv 10.1103/PhysRevE.76.056309
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70088367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70088367</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-2f4a737cd3068816668c70d32132e1d3ac71084fd5a84d88435edfeb51b056003</originalsourceid><addsrcrecordid>eNpFkEtPwzAQhC0EoqXwBzignLil2Nn40SOqykNC4qFyjhxnQ4PSuNhOIf8eVy3itKvdmZHmI-SS0SljFG5eVoN_w-1iKsWUcgF0dkTGjHOaZiDF8W6HWQqS8xE58_6TUshA5adkxFQG8a7G5HW5QuuGxNaJ6Z3DLqSVa7bYJU3ngy6btglDgj8bdM06fn28J2v90WFoTLLUQ2tdOrc9hoBJ3dpvf05Oat16vDjMCXm_WyznD-nT8_3j_PYpNUBZSLM61xKkqYAKpZgQQhlJK8gYZMgq0EYyqvK64lrllVI5cKxqLDkrY9dYZUKu97kbZ7969KFYN95g2-oObe8LSalSIGQUZnuhcdZ7h3WxiV20GwpGix3I4g9kIUWxBxlNV4f0vlxj9W85kINfJftxCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70088367</pqid></control><display><type>article</type><title>Theory of current-driven instability experiments in magnetic Taylor-Couette flows</title><source>APS: American Physical Society E-Journals (Physics)</source><creator>Rüdiger, Günther ; Schultz, Manfred ; Shalybkov, Dima ; Hollerbach, Rainer</creator><creatorcontrib>Rüdiger, Günther ; Schultz, Manfred ; Shalybkov, Dima ; Hollerbach, Rainer</creatorcontrib><description>We consider the linear stability of dissipative magnetic Taylor-Couette flow with imposed toroidal magnetic fields. The inner and outer cylinders can be either insulating or conducting; the inner one rotates, the outer one is stationary. The magnetic Prandtl number can be as small as 10(-5) , approaching realistic liquid-metal values. The magnetic field destabilizes the flow, except for radial profiles of B(phi)(R) close to the current-free solution. The profile with B(in)=B(out) (the most uniform field) is considered in detail. For weak fields the Taylor-Couette flow is stabilized, until for moderately strong fields the m=1 azimuthal mode dramatically destabilizes the flow again so that a maximum value for the critical Reynolds number exists. For sufficiently strong fields (as measured by the Hartmann number) the toroidal field is always unstable, even for the nonrotating case with Re=0 . The electric currents needed to generate the required toroidal fields in laboratory experiments are a few kA if liquid sodium is used, somewhat more if gallium is used. Weaker currents are needed for wider gaps, so a wide-gap apparatus could succeed even with gallium. The critical Reynolds numbers are only somewhat larger than the nonmagnetic values; hence such experiments would work with only modest rotation rates.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.76.056309</identifier><identifier>PMID: 18233758</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2007-11, Vol.76 (5 Pt 2), p.056309-056309, Article 056309</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-2f4a737cd3068816668c70d32132e1d3ac71084fd5a84d88435edfeb51b056003</citedby><cites>FETCH-LOGICAL-c301t-2f4a737cd3068816668c70d32132e1d3ac71084fd5a84d88435edfeb51b056003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18233758$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rüdiger, Günther</creatorcontrib><creatorcontrib>Schultz, Manfred</creatorcontrib><creatorcontrib>Shalybkov, Dima</creatorcontrib><creatorcontrib>Hollerbach, Rainer</creatorcontrib><title>Theory of current-driven instability experiments in magnetic Taylor-Couette flows</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>We consider the linear stability of dissipative magnetic Taylor-Couette flow with imposed toroidal magnetic fields. The inner and outer cylinders can be either insulating or conducting; the inner one rotates, the outer one is stationary. The magnetic Prandtl number can be as small as 10(-5) , approaching realistic liquid-metal values. The magnetic field destabilizes the flow, except for radial profiles of B(phi)(R) close to the current-free solution. The profile with B(in)=B(out) (the most uniform field) is considered in detail. For weak fields the Taylor-Couette flow is stabilized, until for moderately strong fields the m=1 azimuthal mode dramatically destabilizes the flow again so that a maximum value for the critical Reynolds number exists. For sufficiently strong fields (as measured by the Hartmann number) the toroidal field is always unstable, even for the nonrotating case with Re=0 . The electric currents needed to generate the required toroidal fields in laboratory experiments are a few kA if liquid sodium is used, somewhat more if gallium is used. Weaker currents are needed for wider gaps, so a wide-gap apparatus could succeed even with gallium. The critical Reynolds numbers are only somewhat larger than the nonmagnetic values; hence such experiments would work with only modest rotation rates.</description><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpFkEtPwzAQhC0EoqXwBzignLil2Nn40SOqykNC4qFyjhxnQ4PSuNhOIf8eVy3itKvdmZHmI-SS0SljFG5eVoN_w-1iKsWUcgF0dkTGjHOaZiDF8W6HWQqS8xE58_6TUshA5adkxFQG8a7G5HW5QuuGxNaJ6Z3DLqSVa7bYJU3ngy6btglDgj8bdM06fn28J2v90WFoTLLUQ2tdOrc9hoBJ3dpvf05Oat16vDjMCXm_WyznD-nT8_3j_PYpNUBZSLM61xKkqYAKpZgQQhlJK8gYZMgq0EYyqvK64lrllVI5cKxqLDkrY9dYZUKu97kbZ7969KFYN95g2-oObe8LSalSIGQUZnuhcdZ7h3WxiV20GwpGix3I4g9kIUWxBxlNV4f0vlxj9W85kINfJftxCQ</recordid><startdate>20071101</startdate><enddate>20071101</enddate><creator>Rüdiger, Günther</creator><creator>Schultz, Manfred</creator><creator>Shalybkov, Dima</creator><creator>Hollerbach, Rainer</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20071101</creationdate><title>Theory of current-driven instability experiments in magnetic Taylor-Couette flows</title><author>Rüdiger, Günther ; Schultz, Manfred ; Shalybkov, Dima ; Hollerbach, Rainer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-2f4a737cd3068816668c70d32132e1d3ac71084fd5a84d88435edfeb51b056003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Rüdiger, Günther</creatorcontrib><creatorcontrib>Schultz, Manfred</creatorcontrib><creatorcontrib>Shalybkov, Dima</creatorcontrib><creatorcontrib>Hollerbach, Rainer</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rüdiger, Günther</au><au>Schultz, Manfred</au><au>Shalybkov, Dima</au><au>Hollerbach, Rainer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theory of current-driven instability experiments in magnetic Taylor-Couette flows</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2007-11-01</date><risdate>2007</risdate><volume>76</volume><issue>5 Pt 2</issue><spage>056309</spage><epage>056309</epage><pages>056309-056309</pages><artnum>056309</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>We consider the linear stability of dissipative magnetic Taylor-Couette flow with imposed toroidal magnetic fields. The inner and outer cylinders can be either insulating or conducting; the inner one rotates, the outer one is stationary. The magnetic Prandtl number can be as small as 10(-5) , approaching realistic liquid-metal values. The magnetic field destabilizes the flow, except for radial profiles of B(phi)(R) close to the current-free solution. The profile with B(in)=B(out) (the most uniform field) is considered in detail. For weak fields the Taylor-Couette flow is stabilized, until for moderately strong fields the m=1 azimuthal mode dramatically destabilizes the flow again so that a maximum value for the critical Reynolds number exists. For sufficiently strong fields (as measured by the Hartmann number) the toroidal field is always unstable, even for the nonrotating case with Re=0 . The electric currents needed to generate the required toroidal fields in laboratory experiments are a few kA if liquid sodium is used, somewhat more if gallium is used. Weaker currents are needed for wider gaps, so a wide-gap apparatus could succeed even with gallium. The critical Reynolds numbers are only somewhat larger than the nonmagnetic values; hence such experiments would work with only modest rotation rates.</abstract><cop>United States</cop><pmid>18233758</pmid><doi>10.1103/PhysRevE.76.056309</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1539-3755
ispartof Physical review. E, Statistical, nonlinear, and soft matter physics, 2007-11, Vol.76 (5 Pt 2), p.056309-056309, Article 056309
issn 1539-3755
1550-2376
language eng
recordid cdi_proquest_miscellaneous_70088367
source APS: American Physical Society E-Journals (Physics)
title Theory of current-driven instability experiments in magnetic Taylor-Couette flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T11%3A45%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theory%20of%20current-driven%20instability%20experiments%20in%20magnetic%20Taylor-Couette%20flows&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=R%C3%BCdiger,%20G%C3%BCnther&rft.date=2007-11-01&rft.volume=76&rft.issue=5%20Pt%202&rft.spage=056309&rft.epage=056309&rft.pages=056309-056309&rft.artnum=056309&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.76.056309&rft_dat=%3Cproquest_cross%3E70088367%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70088367&rft_id=info:pmid/18233758&rfr_iscdi=true