Mg2+ Binding and Catalytic Function of Sphingomyelinase from Bacillus cereus
The modes of Mg2+ binding to SMase from Bacillus cereus were studied on the basis of the changes in the tryptophyl fluorescence intensity. This enzyme was shown to possess at least two binding sites for Mg2+ with low and high affinities. The effects of Mg2+ binding on the enzymatic activity and stru...
Gespeichert in:
Veröffentlicht in: | Journal of biochemistry (Tokyo) 1998-12, Vol.124 (6), p.1178-1187 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1187 |
---|---|
container_issue | 6 |
container_start_page | 1178 |
container_title | Journal of biochemistry (Tokyo) |
container_volume | 124 |
creator | Fujii, Shinobu Inoue, Bunpei Yamamoto, Hiroki Ogata, Kenji Shinki, Tomohiro Inoue, Seiji Tomita, Masahiro Tamura, Hiro-omi Tsukamoto, Kikuo Ikezawa, Hiroh Ikeda, Kiyoshi |
description | The modes of Mg2+ binding to SMase from Bacillus cereus were studied on the basis of the changes in the tryptophyl fluorescence intensity. This enzyme was shown to possess at least two binding sites for Mg2+ with low and high affinities. The effects of Mg2+ binding on the enzymatic activity and structural stability of the enzyme molecule were also studied. The results indicated that the binding of Mg2+ to the low-affinity site was essential for the catalysis, but was independent of the substrate binding to the enzyme. It was also indicated that the alkaline denaturation of the enzyme was partly prevented by the Mg2+ binding, whereas no significant protective effect was observed against the denaturation by urea. The pH dependence of the kinetic parameters for the hydrolysis of micellar HNP and mixed micellar SM with Triton X-100 (1: 10), catalyzed by SMase from B. cereus, was studied in the presence of a large amount of Mg2+ to saturate both the low- and high-affinity sites. The pH dependence curves of the logarithm of 1/Km for these two kinds of substrates were similar in shape to each other, and showed a single transition. On the other hand, the shapes of the pH dependence curves of the logarithm of kcat for these two kinds of substrates were different from each other. The pH dependence curve for micellar HNP showed three transitions and, counting from the acidic end of the pH region, the first and third transitions having tangent lines with slopes of +1 and −1, respectively. On the other hand, the curve for mixed micellar SM with Triton X-100 showed one large transition with a slope of +1 (the first transition) and a very small transition (the third transition). On the basis of the present results and the three-dimensional structure of bovine pancreatic DNase I, which has a primary structure similar to that of B. cereus SMase, we proposed a catalytic mechanism for B. cereus SMase based on general-base catalysis. |
doi_str_mv | 10.1093/oxfordjournals.jbchem.a022236 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70086904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70086904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c457t-d6dedb0910274c6790df0108c56178a7674eb7466201e78be08f74e72bee81de3</originalsourceid><addsrcrecordid>eNpVkEFv2zAMhXVY0aXdfsIAXbZL4ZSSHMk-7NAESzIgXQ_tgGAXQZboVpltZZINJP9-LhIU6Ikg33sk8RHylcGUQSluw6EO0e3CEDvTpOmusi_YTg1wzoX8QCYAnGUlz7cfyVVKu9eWC3FJLstCcMnFhGzun_kNnfvO-e6Zms7RhelNc-y9pcuhs70PHQ01fdy_jIbQHrHxnUlI6xhaOjfWN82QqMWIQ_pELurxD_x8rtfk9_LH02KdbR5WPxd3m8zmM9VnTjp0FZQMuMqtVCW4GhgUdiaZKoySKsdK5VJyYKiKCqGox5HiFWLBHIpr8u20dx_DvwFTr1ufLDaN6TAMSSuAQpaQj8bvJ6ONIaWItd5H35p41Az0K0H9nqA-EdRngmP-y_nQULXo3tJnfKOenXSfejy8ySb-1VIJNdPr7R_N1yt4vP-11FvxH3gAhc8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70086904</pqid></control><display><type>article</type><title>Mg2+ Binding and Catalytic Function of Sphingomyelinase from Bacillus cereus</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese</source><source>Free Full-Text Journals in Chemistry</source><creator>Fujii, Shinobu ; Inoue, Bunpei ; Yamamoto, Hiroki ; Ogata, Kenji ; Shinki, Tomohiro ; Inoue, Seiji ; Tomita, Masahiro ; Tamura, Hiro-omi ; Tsukamoto, Kikuo ; Ikezawa, Hiroh ; Ikeda, Kiyoshi</creator><creatorcontrib>Fujii, Shinobu ; Inoue, Bunpei ; Yamamoto, Hiroki ; Ogata, Kenji ; Shinki, Tomohiro ; Inoue, Seiji ; Tomita, Masahiro ; Tamura, Hiro-omi ; Tsukamoto, Kikuo ; Ikezawa, Hiroh ; Ikeda, Kiyoshi</creatorcontrib><description>The modes of Mg2+ binding to SMase from Bacillus cereus were studied on the basis of the changes in the tryptophyl fluorescence intensity. This enzyme was shown to possess at least two binding sites for Mg2+ with low and high affinities. The effects of Mg2+ binding on the enzymatic activity and structural stability of the enzyme molecule were also studied. The results indicated that the binding of Mg2+ to the low-affinity site was essential for the catalysis, but was independent of the substrate binding to the enzyme. It was also indicated that the alkaline denaturation of the enzyme was partly prevented by the Mg2+ binding, whereas no significant protective effect was observed against the denaturation by urea. The pH dependence of the kinetic parameters for the hydrolysis of micellar HNP and mixed micellar SM with Triton X-100 (1: 10), catalyzed by SMase from B. cereus, was studied in the presence of a large amount of Mg2+ to saturate both the low- and high-affinity sites. The pH dependence curves of the logarithm of 1/Km for these two kinds of substrates were similar in shape to each other, and showed a single transition. On the other hand, the shapes of the pH dependence curves of the logarithm of kcat for these two kinds of substrates were different from each other. The pH dependence curve for micellar HNP showed three transitions and, counting from the acidic end of the pH region, the first and third transitions having tangent lines with slopes of +1 and −1, respectively. On the other hand, the curve for mixed micellar SM with Triton X-100 showed one large transition with a slope of +1 (the first transition) and a very small transition (the third transition). On the basis of the present results and the three-dimensional structure of bovine pancreatic DNase I, which has a primary structure similar to that of B. cereus SMase, we proposed a catalytic mechanism for B. cereus SMase based on general-base catalysis.</description><identifier>ISSN: 0021-924X</identifier><identifier>DOI: 10.1093/oxfordjournals.jbchem.a022236</identifier><identifier>PMID: 9832623</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Animals ; Bacillus cereus - enzymology ; Catalysis ; catalytic mechanism ; Cattle ; denaturation ; Deoxyribonuclease I - chemistry ; Deoxyribonuclease I - metabolism ; enzyme kinetics ; Enzyme Stability ; Hydrogen-Ion Concentration ; Hydrolysis ; Kinetics ; Magnesium - metabolism ; Mg2+ binding ; Micelles ; Octoxynol - chemistry ; Phosphorylcholine - analogs & derivatives ; Phosphorylcholine - chemistry ; Phosphorylcholine - metabolism ; Protein Denaturation - drug effects ; Sphingomyelin Phosphodiesterase - chemistry ; Sphingomyelin Phosphodiesterase - drug effects ; Sphingomyelin Phosphodiesterase - metabolism ; sphingomyelinase ; Sphingomyelins - chemistry ; Sphingomyelins - metabolism ; Urea - chemistry</subject><ispartof>Journal of biochemistry (Tokyo), 1998-12, Vol.124 (6), p.1178-1187</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c457t-d6dedb0910274c6790df0108c56178a7674eb7466201e78be08f74e72bee81de3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9832623$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fujii, Shinobu</creatorcontrib><creatorcontrib>Inoue, Bunpei</creatorcontrib><creatorcontrib>Yamamoto, Hiroki</creatorcontrib><creatorcontrib>Ogata, Kenji</creatorcontrib><creatorcontrib>Shinki, Tomohiro</creatorcontrib><creatorcontrib>Inoue, Seiji</creatorcontrib><creatorcontrib>Tomita, Masahiro</creatorcontrib><creatorcontrib>Tamura, Hiro-omi</creatorcontrib><creatorcontrib>Tsukamoto, Kikuo</creatorcontrib><creatorcontrib>Ikezawa, Hiroh</creatorcontrib><creatorcontrib>Ikeda, Kiyoshi</creatorcontrib><title>Mg2+ Binding and Catalytic Function of Sphingomyelinase from Bacillus cereus</title><title>Journal of biochemistry (Tokyo)</title><addtitle>J Biochem</addtitle><description>The modes of Mg2+ binding to SMase from Bacillus cereus were studied on the basis of the changes in the tryptophyl fluorescence intensity. This enzyme was shown to possess at least two binding sites for Mg2+ with low and high affinities. The effects of Mg2+ binding on the enzymatic activity and structural stability of the enzyme molecule were also studied. The results indicated that the binding of Mg2+ to the low-affinity site was essential for the catalysis, but was independent of the substrate binding to the enzyme. It was also indicated that the alkaline denaturation of the enzyme was partly prevented by the Mg2+ binding, whereas no significant protective effect was observed against the denaturation by urea. The pH dependence of the kinetic parameters for the hydrolysis of micellar HNP and mixed micellar SM with Triton X-100 (1: 10), catalyzed by SMase from B. cereus, was studied in the presence of a large amount of Mg2+ to saturate both the low- and high-affinity sites. The pH dependence curves of the logarithm of 1/Km for these two kinds of substrates were similar in shape to each other, and showed a single transition. On the other hand, the shapes of the pH dependence curves of the logarithm of kcat for these two kinds of substrates were different from each other. The pH dependence curve for micellar HNP showed three transitions and, counting from the acidic end of the pH region, the first and third transitions having tangent lines with slopes of +1 and −1, respectively. On the other hand, the curve for mixed micellar SM with Triton X-100 showed one large transition with a slope of +1 (the first transition) and a very small transition (the third transition). On the basis of the present results and the three-dimensional structure of bovine pancreatic DNase I, which has a primary structure similar to that of B. cereus SMase, we proposed a catalytic mechanism for B. cereus SMase based on general-base catalysis.</description><subject>Animals</subject><subject>Bacillus cereus - enzymology</subject><subject>Catalysis</subject><subject>catalytic mechanism</subject><subject>Cattle</subject><subject>denaturation</subject><subject>Deoxyribonuclease I - chemistry</subject><subject>Deoxyribonuclease I - metabolism</subject><subject>enzyme kinetics</subject><subject>Enzyme Stability</subject><subject>Hydrogen-Ion Concentration</subject><subject>Hydrolysis</subject><subject>Kinetics</subject><subject>Magnesium - metabolism</subject><subject>Mg2+ binding</subject><subject>Micelles</subject><subject>Octoxynol - chemistry</subject><subject>Phosphorylcholine - analogs & derivatives</subject><subject>Phosphorylcholine - chemistry</subject><subject>Phosphorylcholine - metabolism</subject><subject>Protein Denaturation - drug effects</subject><subject>Sphingomyelin Phosphodiesterase - chemistry</subject><subject>Sphingomyelin Phosphodiesterase - drug effects</subject><subject>Sphingomyelin Phosphodiesterase - metabolism</subject><subject>sphingomyelinase</subject><subject>Sphingomyelins - chemistry</subject><subject>Sphingomyelins - metabolism</subject><subject>Urea - chemistry</subject><issn>0021-924X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkEFv2zAMhXVY0aXdfsIAXbZL4ZSSHMk-7NAESzIgXQ_tgGAXQZboVpltZZINJP9-LhIU6Ikg33sk8RHylcGUQSluw6EO0e3CEDvTpOmusi_YTg1wzoX8QCYAnGUlz7cfyVVKu9eWC3FJLstCcMnFhGzun_kNnfvO-e6Zms7RhelNc-y9pcuhs70PHQ01fdy_jIbQHrHxnUlI6xhaOjfWN82QqMWIQ_pELurxD_x8rtfk9_LH02KdbR5WPxd3m8zmM9VnTjp0FZQMuMqtVCW4GhgUdiaZKoySKsdK5VJyYKiKCqGox5HiFWLBHIpr8u20dx_DvwFTr1ufLDaN6TAMSSuAQpaQj8bvJ6ONIaWItd5H35p41Az0K0H9nqA-EdRngmP-y_nQULXo3tJnfKOenXSfejy8ySb-1VIJNdPr7R_N1yt4vP-11FvxH3gAhc8</recordid><startdate>19981201</startdate><enddate>19981201</enddate><creator>Fujii, Shinobu</creator><creator>Inoue, Bunpei</creator><creator>Yamamoto, Hiroki</creator><creator>Ogata, Kenji</creator><creator>Shinki, Tomohiro</creator><creator>Inoue, Seiji</creator><creator>Tomita, Masahiro</creator><creator>Tamura, Hiro-omi</creator><creator>Tsukamoto, Kikuo</creator><creator>Ikezawa, Hiroh</creator><creator>Ikeda, Kiyoshi</creator><general>Oxford University Press</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19981201</creationdate><title>Mg2+ Binding and Catalytic Function of Sphingomyelinase from Bacillus cereus</title><author>Fujii, Shinobu ; Inoue, Bunpei ; Yamamoto, Hiroki ; Ogata, Kenji ; Shinki, Tomohiro ; Inoue, Seiji ; Tomita, Masahiro ; Tamura, Hiro-omi ; Tsukamoto, Kikuo ; Ikezawa, Hiroh ; Ikeda, Kiyoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c457t-d6dedb0910274c6790df0108c56178a7674eb7466201e78be08f74e72bee81de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Animals</topic><topic>Bacillus cereus - enzymology</topic><topic>Catalysis</topic><topic>catalytic mechanism</topic><topic>Cattle</topic><topic>denaturation</topic><topic>Deoxyribonuclease I - chemistry</topic><topic>Deoxyribonuclease I - metabolism</topic><topic>enzyme kinetics</topic><topic>Enzyme Stability</topic><topic>Hydrogen-Ion Concentration</topic><topic>Hydrolysis</topic><topic>Kinetics</topic><topic>Magnesium - metabolism</topic><topic>Mg2+ binding</topic><topic>Micelles</topic><topic>Octoxynol - chemistry</topic><topic>Phosphorylcholine - analogs & derivatives</topic><topic>Phosphorylcholine - chemistry</topic><topic>Phosphorylcholine - metabolism</topic><topic>Protein Denaturation - drug effects</topic><topic>Sphingomyelin Phosphodiesterase - chemistry</topic><topic>Sphingomyelin Phosphodiesterase - drug effects</topic><topic>Sphingomyelin Phosphodiesterase - metabolism</topic><topic>sphingomyelinase</topic><topic>Sphingomyelins - chemistry</topic><topic>Sphingomyelins - metabolism</topic><topic>Urea - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fujii, Shinobu</creatorcontrib><creatorcontrib>Inoue, Bunpei</creatorcontrib><creatorcontrib>Yamamoto, Hiroki</creatorcontrib><creatorcontrib>Ogata, Kenji</creatorcontrib><creatorcontrib>Shinki, Tomohiro</creatorcontrib><creatorcontrib>Inoue, Seiji</creatorcontrib><creatorcontrib>Tomita, Masahiro</creatorcontrib><creatorcontrib>Tamura, Hiro-omi</creatorcontrib><creatorcontrib>Tsukamoto, Kikuo</creatorcontrib><creatorcontrib>Ikezawa, Hiroh</creatorcontrib><creatorcontrib>Ikeda, Kiyoshi</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biochemistry (Tokyo)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fujii, Shinobu</au><au>Inoue, Bunpei</au><au>Yamamoto, Hiroki</au><au>Ogata, Kenji</au><au>Shinki, Tomohiro</au><au>Inoue, Seiji</au><au>Tomita, Masahiro</au><au>Tamura, Hiro-omi</au><au>Tsukamoto, Kikuo</au><au>Ikezawa, Hiroh</au><au>Ikeda, Kiyoshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mg2+ Binding and Catalytic Function of Sphingomyelinase from Bacillus cereus</atitle><jtitle>Journal of biochemistry (Tokyo)</jtitle><addtitle>J Biochem</addtitle><date>1998-12-01</date><risdate>1998</risdate><volume>124</volume><issue>6</issue><spage>1178</spage><epage>1187</epage><pages>1178-1187</pages><issn>0021-924X</issn><abstract>The modes of Mg2+ binding to SMase from Bacillus cereus were studied on the basis of the changes in the tryptophyl fluorescence intensity. This enzyme was shown to possess at least two binding sites for Mg2+ with low and high affinities. The effects of Mg2+ binding on the enzymatic activity and structural stability of the enzyme molecule were also studied. The results indicated that the binding of Mg2+ to the low-affinity site was essential for the catalysis, but was independent of the substrate binding to the enzyme. It was also indicated that the alkaline denaturation of the enzyme was partly prevented by the Mg2+ binding, whereas no significant protective effect was observed against the denaturation by urea. The pH dependence of the kinetic parameters for the hydrolysis of micellar HNP and mixed micellar SM with Triton X-100 (1: 10), catalyzed by SMase from B. cereus, was studied in the presence of a large amount of Mg2+ to saturate both the low- and high-affinity sites. The pH dependence curves of the logarithm of 1/Km for these two kinds of substrates were similar in shape to each other, and showed a single transition. On the other hand, the shapes of the pH dependence curves of the logarithm of kcat for these two kinds of substrates were different from each other. The pH dependence curve for micellar HNP showed three transitions and, counting from the acidic end of the pH region, the first and third transitions having tangent lines with slopes of +1 and −1, respectively. On the other hand, the curve for mixed micellar SM with Triton X-100 showed one large transition with a slope of +1 (the first transition) and a very small transition (the third transition). On the basis of the present results and the three-dimensional structure of bovine pancreatic DNase I, which has a primary structure similar to that of B. cereus SMase, we proposed a catalytic mechanism for B. cereus SMase based on general-base catalysis.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>9832623</pmid><doi>10.1093/oxfordjournals.jbchem.a022236</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-924X |
ispartof | Journal of biochemistry (Tokyo), 1998-12, Vol.124 (6), p.1178-1187 |
issn | 0021-924X |
language | eng |
recordid | cdi_proquest_miscellaneous_70086904 |
source | MEDLINE; Oxford University Press Journals All Titles (1996-Current); J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese; Free Full-Text Journals in Chemistry |
subjects | Animals Bacillus cereus - enzymology Catalysis catalytic mechanism Cattle denaturation Deoxyribonuclease I - chemistry Deoxyribonuclease I - metabolism enzyme kinetics Enzyme Stability Hydrogen-Ion Concentration Hydrolysis Kinetics Magnesium - metabolism Mg2+ binding Micelles Octoxynol - chemistry Phosphorylcholine - analogs & derivatives Phosphorylcholine - chemistry Phosphorylcholine - metabolism Protein Denaturation - drug effects Sphingomyelin Phosphodiesterase - chemistry Sphingomyelin Phosphodiesterase - drug effects Sphingomyelin Phosphodiesterase - metabolism sphingomyelinase Sphingomyelins - chemistry Sphingomyelins - metabolism Urea - chemistry |
title | Mg2+ Binding and Catalytic Function of Sphingomyelinase from Bacillus cereus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T07%3A02%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mg2+%20Binding%20and%20Catalytic%20Function%20of%20Sphingomyelinase%20from%20Bacillus%20cereus&rft.jtitle=Journal%20of%20biochemistry%20(Tokyo)&rft.au=Fujii,%20Shinobu&rft.date=1998-12-01&rft.volume=124&rft.issue=6&rft.spage=1178&rft.epage=1187&rft.pages=1178-1187&rft.issn=0021-924X&rft_id=info:doi/10.1093/oxfordjournals.jbchem.a022236&rft_dat=%3Cproquest_cross%3E70086904%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70086904&rft_id=info:pmid/9832623&rfr_iscdi=true |