Roughness of moving elastic lines: crack and wetting fronts

We investigate propagating fronts in disordered media that belong to the universality class of wetting contact lines and planar tensile crack fronts. We derive from first principles their nonlinear equations of motion, using the generalized Griffith criterion for crack fronts and three standard mobi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2007-11, Vol.76 (5 Pt 1), p.051601-051601, Article 051601
Hauptverfasser: Katzav, E, Adda-Bedia, M, Ben Amar, M, Boudaoud, A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 051601
container_issue 5 Pt 1
container_start_page 051601
container_title Physical review. E, Statistical, nonlinear, and soft matter physics
container_volume 76
creator Katzav, E
Adda-Bedia, M
Ben Amar, M
Boudaoud, A
description We investigate propagating fronts in disordered media that belong to the universality class of wetting contact lines and planar tensile crack fronts. We derive from first principles their nonlinear equations of motion, using the generalized Griffith criterion for crack fronts and three standard mobility laws for contact lines. Then we study their roughness using the self-consistent expansion. When neglecting the irreversibility of fracture and wetting processes, we find a possible dynamic rough phase with a roughness exponent of zeta=1/2 and a dynamic exponent of z=2. When including the irreversibility, we conclude that the front propagation can become history dependent, and thus we consider the value zeta=1/2 as a lower bound for the roughness exponent. Interestingly, for propagating contact line in wetting, where irreversibility is weaker than in fracture, the experimental results are close to 0.5, while for fracture the reported values of 0.55-0.65 are higher.
doi_str_mv 10.1103/PhysRevE.76.051601
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70080701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70080701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-d92df7be03dbbc0848259dacccfdfecbc162184327ee5e78e0a48abea8c2da63</originalsourceid><addsrcrecordid>eNpFkMtOwzAQRS0EoqXwAyxQVuxSxnZiO7BCVXlIlUBV95Zjj9tAHiVOWvXvadUiVnOlOfcuDiG3FMaUAn_4XO3CHDfTsRRjSKkAekaGNE0hZlyK80PmWcxlmg7IVQhfAJxxlVySAVWMcyH4kDzNm365qjGEqPFR1WyKehlhaUJX2Kgs9o_HyLbGfkemdtEWu-4A-Lapu3BNLrwpA96c7ogsXqaLyVs8-3h9nzzPYsuzpItdxpyXOQJ3eW5BJYqlmTPWWu882txSwahKOJOIKUqFYBJlcjTKMmcEH5H74-y6bX56DJ2uimCxLE2NTR-0BFAgge5BdgRt24TQotfrtqhMu9MU9MGY_jOmpdBHY_vS3Wm9zyt0_5WTIv4LX-xqDw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70080701</pqid></control><display><type>article</type><title>Roughness of moving elastic lines: crack and wetting fronts</title><source>American Physical Society Journals</source><creator>Katzav, E ; Adda-Bedia, M ; Ben Amar, M ; Boudaoud, A</creator><creatorcontrib>Katzav, E ; Adda-Bedia, M ; Ben Amar, M ; Boudaoud, A</creatorcontrib><description>We investigate propagating fronts in disordered media that belong to the universality class of wetting contact lines and planar tensile crack fronts. We derive from first principles their nonlinear equations of motion, using the generalized Griffith criterion for crack fronts and three standard mobility laws for contact lines. Then we study their roughness using the self-consistent expansion. When neglecting the irreversibility of fracture and wetting processes, we find a possible dynamic rough phase with a roughness exponent of zeta=1/2 and a dynamic exponent of z=2. When including the irreversibility, we conclude that the front propagation can become history dependent, and thus we consider the value zeta=1/2 as a lower bound for the roughness exponent. Interestingly, for propagating contact line in wetting, where irreversibility is weaker than in fracture, the experimental results are close to 0.5, while for fracture the reported values of 0.55-0.65 are higher.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.76.051601</identifier><identifier>PMID: 18233663</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2007-11, Vol.76 (5 Pt 1), p.051601-051601, Article 051601</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-d92df7be03dbbc0848259dacccfdfecbc162184327ee5e78e0a48abea8c2da63</citedby><cites>FETCH-LOGICAL-c394t-d92df7be03dbbc0848259dacccfdfecbc162184327ee5e78e0a48abea8c2da63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18233663$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Katzav, E</creatorcontrib><creatorcontrib>Adda-Bedia, M</creatorcontrib><creatorcontrib>Ben Amar, M</creatorcontrib><creatorcontrib>Boudaoud, A</creatorcontrib><title>Roughness of moving elastic lines: crack and wetting fronts</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>We investigate propagating fronts in disordered media that belong to the universality class of wetting contact lines and planar tensile crack fronts. We derive from first principles their nonlinear equations of motion, using the generalized Griffith criterion for crack fronts and three standard mobility laws for contact lines. Then we study their roughness using the self-consistent expansion. When neglecting the irreversibility of fracture and wetting processes, we find a possible dynamic rough phase with a roughness exponent of zeta=1/2 and a dynamic exponent of z=2. When including the irreversibility, we conclude that the front propagation can become history dependent, and thus we consider the value zeta=1/2 as a lower bound for the roughness exponent. Interestingly, for propagating contact line in wetting, where irreversibility is weaker than in fracture, the experimental results are close to 0.5, while for fracture the reported values of 0.55-0.65 are higher.</description><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNpFkMtOwzAQRS0EoqXwAyxQVuxSxnZiO7BCVXlIlUBV95Zjj9tAHiVOWvXvadUiVnOlOfcuDiG3FMaUAn_4XO3CHDfTsRRjSKkAekaGNE0hZlyK80PmWcxlmg7IVQhfAJxxlVySAVWMcyH4kDzNm365qjGEqPFR1WyKehlhaUJX2Kgs9o_HyLbGfkemdtEWu-4A-Lapu3BNLrwpA96c7ogsXqaLyVs8-3h9nzzPYsuzpItdxpyXOQJ3eW5BJYqlmTPWWu882txSwahKOJOIKUqFYBJlcjTKMmcEH5H74-y6bX56DJ2uimCxLE2NTR-0BFAgge5BdgRt24TQotfrtqhMu9MU9MGY_jOmpdBHY_vS3Wm9zyt0_5WTIv4LX-xqDw</recordid><startdate>20071101</startdate><enddate>20071101</enddate><creator>Katzav, E</creator><creator>Adda-Bedia, M</creator><creator>Ben Amar, M</creator><creator>Boudaoud, A</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20071101</creationdate><title>Roughness of moving elastic lines: crack and wetting fronts</title><author>Katzav, E ; Adda-Bedia, M ; Ben Amar, M ; Boudaoud, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-d92df7be03dbbc0848259dacccfdfecbc162184327ee5e78e0a48abea8c2da63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Katzav, E</creatorcontrib><creatorcontrib>Adda-Bedia, M</creatorcontrib><creatorcontrib>Ben Amar, M</creatorcontrib><creatorcontrib>Boudaoud, A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Katzav, E</au><au>Adda-Bedia, M</au><au>Ben Amar, M</au><au>Boudaoud, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Roughness of moving elastic lines: crack and wetting fronts</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2007-11-01</date><risdate>2007</risdate><volume>76</volume><issue>5 Pt 1</issue><spage>051601</spage><epage>051601</epage><pages>051601-051601</pages><artnum>051601</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>We investigate propagating fronts in disordered media that belong to the universality class of wetting contact lines and planar tensile crack fronts. We derive from first principles their nonlinear equations of motion, using the generalized Griffith criterion for crack fronts and three standard mobility laws for contact lines. Then we study their roughness using the self-consistent expansion. When neglecting the irreversibility of fracture and wetting processes, we find a possible dynamic rough phase with a roughness exponent of zeta=1/2 and a dynamic exponent of z=2. When including the irreversibility, we conclude that the front propagation can become history dependent, and thus we consider the value zeta=1/2 as a lower bound for the roughness exponent. Interestingly, for propagating contact line in wetting, where irreversibility is weaker than in fracture, the experimental results are close to 0.5, while for fracture the reported values of 0.55-0.65 are higher.</abstract><cop>United States</cop><pmid>18233663</pmid><doi>10.1103/PhysRevE.76.051601</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1539-3755
ispartof Physical review. E, Statistical, nonlinear, and soft matter physics, 2007-11, Vol.76 (5 Pt 1), p.051601-051601, Article 051601
issn 1539-3755
1550-2376
language eng
recordid cdi_proquest_miscellaneous_70080701
source American Physical Society Journals
title Roughness of moving elastic lines: crack and wetting fronts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T08%3A28%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Roughness%20of%20moving%20elastic%20lines:%20crack%20and%20wetting%20fronts&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Katzav,%20E&rft.date=2007-11-01&rft.volume=76&rft.issue=5%20Pt%201&rft.spage=051601&rft.epage=051601&rft.pages=051601-051601&rft.artnum=051601&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.76.051601&rft_dat=%3Cproquest_cross%3E70080701%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70080701&rft_id=info:pmid/18233663&rfr_iscdi=true