Nuclease-resistant external guide sequence-induced cleavage of target RNA by human ribonuclease P

External guide sequences (EGSs) are short oligoribonucleotides, which are designed to bind to a given RNA target and form a precursor tRNA-like complex. This complex can be recognized by ribonuclease P (RNase P), resulting in specific cleavage of the RNA target. To explore the potential of this clas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Antisense & nucleic acid drug development 1998-10, Vol.8 (5), p.415-426
Hauptverfasser: Ma, M Y, Jacob-Samuel, B, Dignam, J C, Pace, U, Goldberg, A R, George, S T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:External guide sequences (EGSs) are short oligoribonucleotides, which are designed to bind to a given RNA target and form a precursor tRNA-like complex. This complex can be recognized by ribonuclease P (RNase P), resulting in specific cleavage of the RNA target. To explore the potential of this class of compounds as therapeutic agents and valuable tools for gene function analysis, various chemical modifications were introduced into an all-RNA EGS molecule to confer nuclease resistance. In particular, 2'-O-methyl substitutions were incorporated into the entire sequence (i.e., A-stem, D-stem, and T-stem) except the T-loop region without loss of cleavage-inducing activity. Replacement of rU (position 54) and rC (position 56) in the T-loop with their 2'-O-methyl counterparts caused pronounced decrease in activity. Moreover, phosphorothioate backbone modification of the T-loop did not provide sufficient protection against endonucleolytic attack at the ribopyrimidine residues. Systematic modification of the T-loop with a variety of modified nucleosides and the addition of a 3'-3' inverted T at the 3'-end have generated several lead EGS prototypes, which not only exhibit wild-type activity in inducing RNase P-mediated target cleavage as compared with the all-RNA control but also remain intact in human serum for more than 24 hours. These results should provide useful insights into the design and development of oligonucleotide-based EGSs as potential regulators of gene expression.
ISSN:1087-2906
DOI:10.1089/oli.1.1998.8.415