Fragmentation of an alkali metal-attached peptide probed by collision-induced dissociation Fourier transform mass spectrometry and computational methodology
Collision‐induced dissociation of metal‐cationized N‐CBZ‐Gly‐Pro‐Gly‐Pro‐Ala was studied by Fourier transform mass spectrometry. Lithium‐, sodium‐, potassium‐ and rubidium‐cationized peptide species were generated by matrix‐assisted laser desorption/ionization (MALDI) using 2,5‐dihydroxybenzoic acid...
Gespeichert in:
Veröffentlicht in: | Journal of mass spectrometry. 1999-09, Vol.34 (9), p.958-968 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 968 |
---|---|
container_issue | 9 |
container_start_page | 958 |
container_title | Journal of mass spectrometry. |
container_volume | 34 |
creator | Tomlinson, Medha J. Scott, Jill R. Wilkins, Charles L. Wright, J. B. White, William E. |
description | Collision‐induced dissociation of metal‐cationized N‐CBZ‐Gly‐Pro‐Gly‐Pro‐Ala was studied by Fourier transform mass spectrometry. Lithium‐, sodium‐, potassium‐ and rubidium‐cationized peptide species were generated by matrix‐assisted laser desorption/ionization (MALDI) using 2,5‐dihydroxybenzoic acid as matrix, together with appropriate metal salts. The experimental mass spectrometric results were interpreted with the aid of Monte Carlo conformational searches using the Amber* force field, together with ab initio molecular orbital calculations with Gaussian‐94 for the singly lithium‐ and potassium‐cationized peptides. It is concluded that metal coordination plays a key role in guiding the gas‐phase fragmentation of the cationized peptide. In contrast to lithium and sodium, potassium and rubidium apparently do not coordinate to the C‐terminal carbonyl. When the peptide is cationized with the two smaller alkali metals, losses corresponding to alanine and CBZ are observed, while the coordination of potassium and rubidium results in only CBZ loss upon dissociation. Copyright © 1999 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/(SICI)1096-9888(199909)34:9<958::AID-JMS858>3.0.CO;2-A |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70062381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70062381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5128-8737283105e6172ce4c6c6d056d09470c63629a4a12244492ff412b45ad26a573</originalsourceid><addsrcrecordid>eNqFkdFu0zAUhiMEYmPwCigXCG0XKbZjJ3FBk6pAR6GjQgOGuDlyHWczc-JgJ4K-Cw-Lo1QDCSQuIifW7-_88RdFpxjNMELk2fHFqlydYMSzhBdFcYw554ifpHTOX3BWzOeL1cvkzflFwYrTdIZm5eY5SRZ3osPbI3fH9zxLGM7pQfTA-68IIc5pdj86wIhyzDg5jH4unbhqVNuLXts2tnUs2liYG2F03KhemET0vZDXqoo71fW6UnHn7DZ8bnextMZoH84luq0GGTYr7b2VeoIt7eC0cnHvROtr65q4Ed7HvlOydzbQ3S5MqwKm6YapgDDj1GtbWWOvdg-je7UwXj3ar0fRx-WrD-XrZL05W5WLdSIZJkVS5GlOihQjpjKcE6mozGRWIRYeTnMkszQjXFCBCaGUclLXFJMtZaIimWB5ehQ9nbjh174NyvfQaC-VMaJVdvCQI5SRtMAh-GkKSme9d6qGzulGuB1gBKM3gNEbjBJglACTN0gpcAjeAII3mLxBCgjKDRBYBPDjfYNh26jqD-wkKgSe7APCS2HqcKVS-985zsKcIsQ-T7Hv2qjdX-3-U-6f3fY7AZ1MaO179eMWLdwNZEEAg8t3Z4Devk_X-MslnKe_ANoG0zI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70062381</pqid></control><display><type>article</type><title>Fragmentation of an alkali metal-attached peptide probed by collision-induced dissociation Fourier transform mass spectrometry and computational methodology</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Tomlinson, Medha J. ; Scott, Jill R. ; Wilkins, Charles L. ; Wright, J. B. ; White, William E.</creator><creatorcontrib>Tomlinson, Medha J. ; Scott, Jill R. ; Wilkins, Charles L. ; Wright, J. B. ; White, William E.</creatorcontrib><description>Collision‐induced dissociation of metal‐cationized N‐CBZ‐Gly‐Pro‐Gly‐Pro‐Ala was studied by Fourier transform mass spectrometry. Lithium‐, sodium‐, potassium‐ and rubidium‐cationized peptide species were generated by matrix‐assisted laser desorption/ionization (MALDI) using 2,5‐dihydroxybenzoic acid as matrix, together with appropriate metal salts. The experimental mass spectrometric results were interpreted with the aid of Monte Carlo conformational searches using the Amber* force field, together with ab initio molecular orbital calculations with Gaussian‐94 for the singly lithium‐ and potassium‐cationized peptides. It is concluded that metal coordination plays a key role in guiding the gas‐phase fragmentation of the cationized peptide. In contrast to lithium and sodium, potassium and rubidium apparently do not coordinate to the C‐terminal carbonyl. When the peptide is cationized with the two smaller alkali metals, losses corresponding to alanine and CBZ are observed, while the coordination of potassium and rubidium results in only CBZ loss upon dissociation. Copyright © 1999 John Wiley & Sons, Ltd.</description><identifier>ISSN: 1076-5174</identifier><identifier>EISSN: 1096-9888</identifier><identifier>DOI: 10.1002/(SICI)1096-9888(199909)34:9<958::AID-JMS858>3.0.CO;2-A</identifier><identifier>PMID: 10491592</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>ab initio ; alkali metal-attached peptides ; Amino Acid Sequence ; Binding Sites ; Chemistry ; collision-induced dissociation ; Exact sciences and technology ; Fourier Analysis ; Lithium - chemistry ; Mass spectrometry ; Mass Spectrometry - methods ; matrix-assisted laser desorption/ionization ; Metals - chemistry ; Models, Molecular ; Monte Carlo ; Monte Carlo Method ; Oligopeptides - chemistry ; Organic chemistry ; Potassium - chemistry ; Protein Conformation ; Reactivity and mechanisms ; Rubidium - chemistry ; Sodium - chemistry</subject><ispartof>Journal of mass spectrometry., 1999-09, Vol.34 (9), p.958-968</ispartof><rights>Copyright © 1999 John Wiley & Sons, Ltd.</rights><rights>1999 INIST-CNRS</rights><rights>Copyright 1999 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c5128-8737283105e6172ce4c6c6d056d09470c63629a4a12244492ff412b45ad26a573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F%28SICI%291096-9888%28199909%2934%3A9%3C958%3A%3AAID-JMS858%3E3.0.CO%3B2-A$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F%28SICI%291096-9888%28199909%2934%3A9%3C958%3A%3AAID-JMS858%3E3.0.CO%3B2-A$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1959908$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10491592$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tomlinson, Medha J.</creatorcontrib><creatorcontrib>Scott, Jill R.</creatorcontrib><creatorcontrib>Wilkins, Charles L.</creatorcontrib><creatorcontrib>Wright, J. B.</creatorcontrib><creatorcontrib>White, William E.</creatorcontrib><title>Fragmentation of an alkali metal-attached peptide probed by collision-induced dissociation Fourier transform mass spectrometry and computational methodology</title><title>Journal of mass spectrometry.</title><addtitle>J. Mass Spectrom</addtitle><description>Collision‐induced dissociation of metal‐cationized N‐CBZ‐Gly‐Pro‐Gly‐Pro‐Ala was studied by Fourier transform mass spectrometry. Lithium‐, sodium‐, potassium‐ and rubidium‐cationized peptide species were generated by matrix‐assisted laser desorption/ionization (MALDI) using 2,5‐dihydroxybenzoic acid as matrix, together with appropriate metal salts. The experimental mass spectrometric results were interpreted with the aid of Monte Carlo conformational searches using the Amber* force field, together with ab initio molecular orbital calculations with Gaussian‐94 for the singly lithium‐ and potassium‐cationized peptides. It is concluded that metal coordination plays a key role in guiding the gas‐phase fragmentation of the cationized peptide. In contrast to lithium and sodium, potassium and rubidium apparently do not coordinate to the C‐terminal carbonyl. When the peptide is cationized with the two smaller alkali metals, losses corresponding to alanine and CBZ are observed, while the coordination of potassium and rubidium results in only CBZ loss upon dissociation. Copyright © 1999 John Wiley & Sons, Ltd.</description><subject>ab initio</subject><subject>alkali metal-attached peptides</subject><subject>Amino Acid Sequence</subject><subject>Binding Sites</subject><subject>Chemistry</subject><subject>collision-induced dissociation</subject><subject>Exact sciences and technology</subject><subject>Fourier Analysis</subject><subject>Lithium - chemistry</subject><subject>Mass spectrometry</subject><subject>Mass Spectrometry - methods</subject><subject>matrix-assisted laser desorption/ionization</subject><subject>Metals - chemistry</subject><subject>Models, Molecular</subject><subject>Monte Carlo</subject><subject>Monte Carlo Method</subject><subject>Oligopeptides - chemistry</subject><subject>Organic chemistry</subject><subject>Potassium - chemistry</subject><subject>Protein Conformation</subject><subject>Reactivity and mechanisms</subject><subject>Rubidium - chemistry</subject><subject>Sodium - chemistry</subject><issn>1076-5174</issn><issn>1096-9888</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkdFu0zAUhiMEYmPwCigXCG0XKbZjJ3FBk6pAR6GjQgOGuDlyHWczc-JgJ4K-Cw-Lo1QDCSQuIifW7-_88RdFpxjNMELk2fHFqlydYMSzhBdFcYw554ifpHTOX3BWzOeL1cvkzflFwYrTdIZm5eY5SRZ3osPbI3fH9zxLGM7pQfTA-68IIc5pdj86wIhyzDg5jH4unbhqVNuLXts2tnUs2liYG2F03KhemET0vZDXqoo71fW6UnHn7DZ8bnextMZoH84luq0GGTYr7b2VeoIt7eC0cnHvROtr65q4Ed7HvlOydzbQ3S5MqwKm6YapgDDj1GtbWWOvdg-je7UwXj3ar0fRx-WrD-XrZL05W5WLdSIZJkVS5GlOihQjpjKcE6mozGRWIRYeTnMkszQjXFCBCaGUclLXFJMtZaIimWB5ehQ9nbjh174NyvfQaC-VMaJVdvCQI5SRtMAh-GkKSme9d6qGzulGuB1gBKM3gNEbjBJglACTN0gpcAjeAII3mLxBCgjKDRBYBPDjfYNh26jqD-wkKgSe7APCS2HqcKVS-985zsKcIsQ-T7Hv2qjdX-3-U-6f3fY7AZ1MaO179eMWLdwNZEEAg8t3Z4Devk_X-MslnKe_ANoG0zI</recordid><startdate>199909</startdate><enddate>199909</enddate><creator>Tomlinson, Medha J.</creator><creator>Scott, Jill R.</creator><creator>Wilkins, Charles L.</creator><creator>Wright, J. B.</creator><creator>White, William E.</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>199909</creationdate><title>Fragmentation of an alkali metal-attached peptide probed by collision-induced dissociation Fourier transform mass spectrometry and computational methodology</title><author>Tomlinson, Medha J. ; Scott, Jill R. ; Wilkins, Charles L. ; Wright, J. B. ; White, William E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5128-8737283105e6172ce4c6c6d056d09470c63629a4a12244492ff412b45ad26a573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>ab initio</topic><topic>alkali metal-attached peptides</topic><topic>Amino Acid Sequence</topic><topic>Binding Sites</topic><topic>Chemistry</topic><topic>collision-induced dissociation</topic><topic>Exact sciences and technology</topic><topic>Fourier Analysis</topic><topic>Lithium - chemistry</topic><topic>Mass spectrometry</topic><topic>Mass Spectrometry - methods</topic><topic>matrix-assisted laser desorption/ionization</topic><topic>Metals - chemistry</topic><topic>Models, Molecular</topic><topic>Monte Carlo</topic><topic>Monte Carlo Method</topic><topic>Oligopeptides - chemistry</topic><topic>Organic chemistry</topic><topic>Potassium - chemistry</topic><topic>Protein Conformation</topic><topic>Reactivity and mechanisms</topic><topic>Rubidium - chemistry</topic><topic>Sodium - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tomlinson, Medha J.</creatorcontrib><creatorcontrib>Scott, Jill R.</creatorcontrib><creatorcontrib>Wilkins, Charles L.</creatorcontrib><creatorcontrib>Wright, J. B.</creatorcontrib><creatorcontrib>White, William E.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of mass spectrometry.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tomlinson, Medha J.</au><au>Scott, Jill R.</au><au>Wilkins, Charles L.</au><au>Wright, J. B.</au><au>White, William E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fragmentation of an alkali metal-attached peptide probed by collision-induced dissociation Fourier transform mass spectrometry and computational methodology</atitle><jtitle>Journal of mass spectrometry.</jtitle><addtitle>J. Mass Spectrom</addtitle><date>1999-09</date><risdate>1999</risdate><volume>34</volume><issue>9</issue><spage>958</spage><epage>968</epage><pages>958-968</pages><issn>1076-5174</issn><eissn>1096-9888</eissn><abstract>Collision‐induced dissociation of metal‐cationized N‐CBZ‐Gly‐Pro‐Gly‐Pro‐Ala was studied by Fourier transform mass spectrometry. Lithium‐, sodium‐, potassium‐ and rubidium‐cationized peptide species were generated by matrix‐assisted laser desorption/ionization (MALDI) using 2,5‐dihydroxybenzoic acid as matrix, together with appropriate metal salts. The experimental mass spectrometric results were interpreted with the aid of Monte Carlo conformational searches using the Amber* force field, together with ab initio molecular orbital calculations with Gaussian‐94 for the singly lithium‐ and potassium‐cationized peptides. It is concluded that metal coordination plays a key role in guiding the gas‐phase fragmentation of the cationized peptide. In contrast to lithium and sodium, potassium and rubidium apparently do not coordinate to the C‐terminal carbonyl. When the peptide is cationized with the two smaller alkali metals, losses corresponding to alanine and CBZ are observed, while the coordination of potassium and rubidium results in only CBZ loss upon dissociation. Copyright © 1999 John Wiley & Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>10491592</pmid><doi>10.1002/(SICI)1096-9888(199909)34:9<958::AID-JMS858>3.0.CO;2-A</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1076-5174 |
ispartof | Journal of mass spectrometry., 1999-09, Vol.34 (9), p.958-968 |
issn | 1076-5174 1096-9888 |
language | eng |
recordid | cdi_proquest_miscellaneous_70062381 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | ab initio alkali metal-attached peptides Amino Acid Sequence Binding Sites Chemistry collision-induced dissociation Exact sciences and technology Fourier Analysis Lithium - chemistry Mass spectrometry Mass Spectrometry - methods matrix-assisted laser desorption/ionization Metals - chemistry Models, Molecular Monte Carlo Monte Carlo Method Oligopeptides - chemistry Organic chemistry Potassium - chemistry Protein Conformation Reactivity and mechanisms Rubidium - chemistry Sodium - chemistry |
title | Fragmentation of an alkali metal-attached peptide probed by collision-induced dissociation Fourier transform mass spectrometry and computational methodology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A13%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fragmentation%20of%20an%20alkali%20metal-attached%20peptide%20probed%20by%20collision-induced%20dissociation%20Fourier%20transform%20mass%20spectrometry%20and%20computational%20methodology&rft.jtitle=Journal%20of%20mass%20spectrometry.&rft.au=Tomlinson,%20Medha%20J.&rft.date=1999-09&rft.volume=34&rft.issue=9&rft.spage=958&rft.epage=968&rft.pages=958-968&rft.issn=1076-5174&rft.eissn=1096-9888&rft_id=info:doi/10.1002/(SICI)1096-9888(199909)34:9%3C958::AID-JMS858%3E3.0.CO;2-A&rft_dat=%3Cproquest_cross%3E70062381%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70062381&rft_id=info:pmid/10491592&rfr_iscdi=true |