Fragmentation of an alkali metal-attached peptide probed by collision-induced dissociation Fourier transform mass spectrometry and computational methodology

Collision‐induced dissociation of metal‐cationized N‐CBZ‐Gly‐Pro‐Gly‐Pro‐Ala was studied by Fourier transform mass spectrometry. Lithium‐, sodium‐, potassium‐ and rubidium‐cationized peptide species were generated by matrix‐assisted laser desorption/ionization (MALDI) using 2,5‐dihydroxybenzoic acid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mass spectrometry. 1999-09, Vol.34 (9), p.958-968
Hauptverfasser: Tomlinson, Medha J., Scott, Jill R., Wilkins, Charles L., Wright, J. B., White, William E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 968
container_issue 9
container_start_page 958
container_title Journal of mass spectrometry.
container_volume 34
creator Tomlinson, Medha J.
Scott, Jill R.
Wilkins, Charles L.
Wright, J. B.
White, William E.
description Collision‐induced dissociation of metal‐cationized N‐CBZ‐Gly‐Pro‐Gly‐Pro‐Ala was studied by Fourier transform mass spectrometry. Lithium‐, sodium‐, potassium‐ and rubidium‐cationized peptide species were generated by matrix‐assisted laser desorption/ionization (MALDI) using 2,5‐dihydroxybenzoic acid as matrix, together with appropriate metal salts. The experimental mass spectrometric results were interpreted with the aid of Monte Carlo conformational searches using the Amber* force field, together with ab initio molecular orbital calculations with Gaussian‐94 for the singly lithium‐ and potassium‐cationized peptides. It is concluded that metal coordination plays a key role in guiding the gas‐phase fragmentation of the cationized peptide. In contrast to lithium and sodium, potassium and rubidium apparently do not coordinate to the C‐terminal carbonyl. When the peptide is cationized with the two smaller alkali metals, losses corresponding to alanine and CBZ are observed, while the coordination of potassium and rubidium results in only CBZ loss upon dissociation. Copyright © 1999 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/(SICI)1096-9888(199909)34:9<958::AID-JMS858>3.0.CO;2-A
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70062381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70062381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5128-8737283105e6172ce4c6c6d056d09470c63629a4a12244492ff412b45ad26a573</originalsourceid><addsrcrecordid>eNqFkdFu0zAUhiMEYmPwCigXCG0XKbZjJ3FBk6pAR6GjQgOGuDlyHWczc-JgJ4K-Cw-Lo1QDCSQuIifW7-_88RdFpxjNMELk2fHFqlydYMSzhBdFcYw554ifpHTOX3BWzOeL1cvkzflFwYrTdIZm5eY5SRZ3osPbI3fH9zxLGM7pQfTA-68IIc5pdj86wIhyzDg5jH4unbhqVNuLXts2tnUs2liYG2F03KhemET0vZDXqoo71fW6UnHn7DZ8bnextMZoH84luq0GGTYr7b2VeoIt7eC0cnHvROtr65q4Ed7HvlOydzbQ3S5MqwKm6YapgDDj1GtbWWOvdg-je7UwXj3ar0fRx-WrD-XrZL05W5WLdSIZJkVS5GlOihQjpjKcE6mozGRWIRYeTnMkszQjXFCBCaGUclLXFJMtZaIimWB5ehQ9nbjh174NyvfQaC-VMaJVdvCQI5SRtMAh-GkKSme9d6qGzulGuB1gBKM3gNEbjBJglACTN0gpcAjeAII3mLxBCgjKDRBYBPDjfYNh26jqD-wkKgSe7APCS2HqcKVS-985zsKcIsQ-T7Hv2qjdX-3-U-6f3fY7AZ1MaO179eMWLdwNZEEAg8t3Z4Devk_X-MslnKe_ANoG0zI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70062381</pqid></control><display><type>article</type><title>Fragmentation of an alkali metal-attached peptide probed by collision-induced dissociation Fourier transform mass spectrometry and computational methodology</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Tomlinson, Medha J. ; Scott, Jill R. ; Wilkins, Charles L. ; Wright, J. B. ; White, William E.</creator><creatorcontrib>Tomlinson, Medha J. ; Scott, Jill R. ; Wilkins, Charles L. ; Wright, J. B. ; White, William E.</creatorcontrib><description>Collision‐induced dissociation of metal‐cationized N‐CBZ‐Gly‐Pro‐Gly‐Pro‐Ala was studied by Fourier transform mass spectrometry. Lithium‐, sodium‐, potassium‐ and rubidium‐cationized peptide species were generated by matrix‐assisted laser desorption/ionization (MALDI) using 2,5‐dihydroxybenzoic acid as matrix, together with appropriate metal salts. The experimental mass spectrometric results were interpreted with the aid of Monte Carlo conformational searches using the Amber* force field, together with ab initio molecular orbital calculations with Gaussian‐94 for the singly lithium‐ and potassium‐cationized peptides. It is concluded that metal coordination plays a key role in guiding the gas‐phase fragmentation of the cationized peptide. In contrast to lithium and sodium, potassium and rubidium apparently do not coordinate to the C‐terminal carbonyl. When the peptide is cationized with the two smaller alkali metals, losses corresponding to alanine and CBZ are observed, while the coordination of potassium and rubidium results in only CBZ loss upon dissociation. Copyright © 1999 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 1076-5174</identifier><identifier>EISSN: 1096-9888</identifier><identifier>DOI: 10.1002/(SICI)1096-9888(199909)34:9&lt;958::AID-JMS858&gt;3.0.CO;2-A</identifier><identifier>PMID: 10491592</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>ab initio ; alkali metal-attached peptides ; Amino Acid Sequence ; Binding Sites ; Chemistry ; collision-induced dissociation ; Exact sciences and technology ; Fourier Analysis ; Lithium - chemistry ; Mass spectrometry ; Mass Spectrometry - methods ; matrix-assisted laser desorption/ionization ; Metals - chemistry ; Models, Molecular ; Monte Carlo ; Monte Carlo Method ; Oligopeptides - chemistry ; Organic chemistry ; Potassium - chemistry ; Protein Conformation ; Reactivity and mechanisms ; Rubidium - chemistry ; Sodium - chemistry</subject><ispartof>Journal of mass spectrometry., 1999-09, Vol.34 (9), p.958-968</ispartof><rights>Copyright © 1999 John Wiley &amp; Sons, Ltd.</rights><rights>1999 INIST-CNRS</rights><rights>Copyright 1999 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c5128-8737283105e6172ce4c6c6d056d09470c63629a4a12244492ff412b45ad26a573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F%28SICI%291096-9888%28199909%2934%3A9%3C958%3A%3AAID-JMS858%3E3.0.CO%3B2-A$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F%28SICI%291096-9888%28199909%2934%3A9%3C958%3A%3AAID-JMS858%3E3.0.CO%3B2-A$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1959908$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10491592$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tomlinson, Medha J.</creatorcontrib><creatorcontrib>Scott, Jill R.</creatorcontrib><creatorcontrib>Wilkins, Charles L.</creatorcontrib><creatorcontrib>Wright, J. B.</creatorcontrib><creatorcontrib>White, William E.</creatorcontrib><title>Fragmentation of an alkali metal-attached peptide probed by collision-induced dissociation Fourier transform mass spectrometry and computational methodology</title><title>Journal of mass spectrometry.</title><addtitle>J. Mass Spectrom</addtitle><description>Collision‐induced dissociation of metal‐cationized N‐CBZ‐Gly‐Pro‐Gly‐Pro‐Ala was studied by Fourier transform mass spectrometry. Lithium‐, sodium‐, potassium‐ and rubidium‐cationized peptide species were generated by matrix‐assisted laser desorption/ionization (MALDI) using 2,5‐dihydroxybenzoic acid as matrix, together with appropriate metal salts. The experimental mass spectrometric results were interpreted with the aid of Monte Carlo conformational searches using the Amber* force field, together with ab initio molecular orbital calculations with Gaussian‐94 for the singly lithium‐ and potassium‐cationized peptides. It is concluded that metal coordination plays a key role in guiding the gas‐phase fragmentation of the cationized peptide. In contrast to lithium and sodium, potassium and rubidium apparently do not coordinate to the C‐terminal carbonyl. When the peptide is cationized with the two smaller alkali metals, losses corresponding to alanine and CBZ are observed, while the coordination of potassium and rubidium results in only CBZ loss upon dissociation. Copyright © 1999 John Wiley &amp; Sons, Ltd.</description><subject>ab initio</subject><subject>alkali metal-attached peptides</subject><subject>Amino Acid Sequence</subject><subject>Binding Sites</subject><subject>Chemistry</subject><subject>collision-induced dissociation</subject><subject>Exact sciences and technology</subject><subject>Fourier Analysis</subject><subject>Lithium - chemistry</subject><subject>Mass spectrometry</subject><subject>Mass Spectrometry - methods</subject><subject>matrix-assisted laser desorption/ionization</subject><subject>Metals - chemistry</subject><subject>Models, Molecular</subject><subject>Monte Carlo</subject><subject>Monte Carlo Method</subject><subject>Oligopeptides - chemistry</subject><subject>Organic chemistry</subject><subject>Potassium - chemistry</subject><subject>Protein Conformation</subject><subject>Reactivity and mechanisms</subject><subject>Rubidium - chemistry</subject><subject>Sodium - chemistry</subject><issn>1076-5174</issn><issn>1096-9888</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkdFu0zAUhiMEYmPwCigXCG0XKbZjJ3FBk6pAR6GjQgOGuDlyHWczc-JgJ4K-Cw-Lo1QDCSQuIifW7-_88RdFpxjNMELk2fHFqlydYMSzhBdFcYw554ifpHTOX3BWzOeL1cvkzflFwYrTdIZm5eY5SRZ3osPbI3fH9zxLGM7pQfTA-68IIc5pdj86wIhyzDg5jH4unbhqVNuLXts2tnUs2liYG2F03KhemET0vZDXqoo71fW6UnHn7DZ8bnextMZoH84luq0GGTYr7b2VeoIt7eC0cnHvROtr65q4Ed7HvlOydzbQ3S5MqwKm6YapgDDj1GtbWWOvdg-je7UwXj3ar0fRx-WrD-XrZL05W5WLdSIZJkVS5GlOihQjpjKcE6mozGRWIRYeTnMkszQjXFCBCaGUclLXFJMtZaIimWB5ehQ9nbjh174NyvfQaC-VMaJVdvCQI5SRtMAh-GkKSme9d6qGzulGuB1gBKM3gNEbjBJglACTN0gpcAjeAII3mLxBCgjKDRBYBPDjfYNh26jqD-wkKgSe7APCS2HqcKVS-985zsKcIsQ-T7Hv2qjdX-3-U-6f3fY7AZ1MaO179eMWLdwNZEEAg8t3Z4Devk_X-MslnKe_ANoG0zI</recordid><startdate>199909</startdate><enddate>199909</enddate><creator>Tomlinson, Medha J.</creator><creator>Scott, Jill R.</creator><creator>Wilkins, Charles L.</creator><creator>Wright, J. B.</creator><creator>White, William E.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>199909</creationdate><title>Fragmentation of an alkali metal-attached peptide probed by collision-induced dissociation Fourier transform mass spectrometry and computational methodology</title><author>Tomlinson, Medha J. ; Scott, Jill R. ; Wilkins, Charles L. ; Wright, J. B. ; White, William E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5128-8737283105e6172ce4c6c6d056d09470c63629a4a12244492ff412b45ad26a573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>ab initio</topic><topic>alkali metal-attached peptides</topic><topic>Amino Acid Sequence</topic><topic>Binding Sites</topic><topic>Chemistry</topic><topic>collision-induced dissociation</topic><topic>Exact sciences and technology</topic><topic>Fourier Analysis</topic><topic>Lithium - chemistry</topic><topic>Mass spectrometry</topic><topic>Mass Spectrometry - methods</topic><topic>matrix-assisted laser desorption/ionization</topic><topic>Metals - chemistry</topic><topic>Models, Molecular</topic><topic>Monte Carlo</topic><topic>Monte Carlo Method</topic><topic>Oligopeptides - chemistry</topic><topic>Organic chemistry</topic><topic>Potassium - chemistry</topic><topic>Protein Conformation</topic><topic>Reactivity and mechanisms</topic><topic>Rubidium - chemistry</topic><topic>Sodium - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tomlinson, Medha J.</creatorcontrib><creatorcontrib>Scott, Jill R.</creatorcontrib><creatorcontrib>Wilkins, Charles L.</creatorcontrib><creatorcontrib>Wright, J. B.</creatorcontrib><creatorcontrib>White, William E.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of mass spectrometry.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tomlinson, Medha J.</au><au>Scott, Jill R.</au><au>Wilkins, Charles L.</au><au>Wright, J. B.</au><au>White, William E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fragmentation of an alkali metal-attached peptide probed by collision-induced dissociation Fourier transform mass spectrometry and computational methodology</atitle><jtitle>Journal of mass spectrometry.</jtitle><addtitle>J. Mass Spectrom</addtitle><date>1999-09</date><risdate>1999</risdate><volume>34</volume><issue>9</issue><spage>958</spage><epage>968</epage><pages>958-968</pages><issn>1076-5174</issn><eissn>1096-9888</eissn><abstract>Collision‐induced dissociation of metal‐cationized N‐CBZ‐Gly‐Pro‐Gly‐Pro‐Ala was studied by Fourier transform mass spectrometry. Lithium‐, sodium‐, potassium‐ and rubidium‐cationized peptide species were generated by matrix‐assisted laser desorption/ionization (MALDI) using 2,5‐dihydroxybenzoic acid as matrix, together with appropriate metal salts. The experimental mass spectrometric results were interpreted with the aid of Monte Carlo conformational searches using the Amber* force field, together with ab initio molecular orbital calculations with Gaussian‐94 for the singly lithium‐ and potassium‐cationized peptides. It is concluded that metal coordination plays a key role in guiding the gas‐phase fragmentation of the cationized peptide. In contrast to lithium and sodium, potassium and rubidium apparently do not coordinate to the C‐terminal carbonyl. When the peptide is cationized with the two smaller alkali metals, losses corresponding to alanine and CBZ are observed, while the coordination of potassium and rubidium results in only CBZ loss upon dissociation. Copyright © 1999 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>10491592</pmid><doi>10.1002/(SICI)1096-9888(199909)34:9&lt;958::AID-JMS858&gt;3.0.CO;2-A</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1076-5174
ispartof Journal of mass spectrometry., 1999-09, Vol.34 (9), p.958-968
issn 1076-5174
1096-9888
language eng
recordid cdi_proquest_miscellaneous_70062381
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects ab initio
alkali metal-attached peptides
Amino Acid Sequence
Binding Sites
Chemistry
collision-induced dissociation
Exact sciences and technology
Fourier Analysis
Lithium - chemistry
Mass spectrometry
Mass Spectrometry - methods
matrix-assisted laser desorption/ionization
Metals - chemistry
Models, Molecular
Monte Carlo
Monte Carlo Method
Oligopeptides - chemistry
Organic chemistry
Potassium - chemistry
Protein Conformation
Reactivity and mechanisms
Rubidium - chemistry
Sodium - chemistry
title Fragmentation of an alkali metal-attached peptide probed by collision-induced dissociation Fourier transform mass spectrometry and computational methodology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A13%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fragmentation%20of%20an%20alkali%20metal-attached%20peptide%20probed%20by%20collision-induced%20dissociation%20Fourier%20transform%20mass%20spectrometry%20and%20computational%20methodology&rft.jtitle=Journal%20of%20mass%20spectrometry.&rft.au=Tomlinson,%20Medha%20J.&rft.date=1999-09&rft.volume=34&rft.issue=9&rft.spage=958&rft.epage=968&rft.pages=958-968&rft.issn=1076-5174&rft.eissn=1096-9888&rft_id=info:doi/10.1002/(SICI)1096-9888(199909)34:9%3C958::AID-JMS858%3E3.0.CO;2-A&rft_dat=%3Cproquest_cross%3E70062381%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70062381&rft_id=info:pmid/10491592&rfr_iscdi=true