Iron acquisition in plague: modular logic in enzymatic biogenesis of yersiniabactin by Yersinia pestis
Background: Virulence in the pathogenic bacterium Yersinia pestis, causative agent of bubonic plague, has been correlated with the biosynthesis and transport of an iron-chelating siderophore, yersiniabactin, which is induced under iron-starvation conditions. Initial DNA sequencing suggested that thi...
Gespeichert in:
Veröffentlicht in: | Chemistry & biology 1998-10, Vol.5 (10), p.573-586 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 586 |
---|---|
container_issue | 10 |
container_start_page | 573 |
container_title | Chemistry & biology |
container_volume | 5 |
creator | Gehring, Amy M. DeMoll, Edward Fetherston, Jacqueline D. Mori, Ichiro Mayhew, George F. Blattner, Frederick R. Walsh, Christopher T. Perry, Robert D. |
description | Background: Virulence in the pathogenic bacterium
Yersinia pestis, causative agent of bubonic plague, has been correlated with the biosynthesis and transport of an iron-chelating siderophore, yersiniabactin, which is induced under iron-starvation conditions. Initial DNA sequencing suggested that this system is highly conserved among the pathogenic
Yersinia. Yersiniabactin contains a phenolic group and three five-membered thiazole heterocycles that serve as iron ligands.
Results: The entire
Y. pestis yersiniabactin region has been sequenced. Sequence analysis of yersiniabactin biosynthetic regions (
irp2-ybtE and
ybtS) reveals a strategy for siderophore production using a mixed polyketide synthase/nonribosomal peptide synthetase complex formed between HMWP1 and HMWP2 (encoded by
irp1 and
irp2). The complex contains 16 domains, five of them variants of phosphopantetheine-modified peptidyl carrier protein or acyl carrier protein domains. HMWP1 and HMWP2 also contain methyltransferase and heterocyclization domains. Mutating
ybtS revealed that this gene encodes a protein essential for yersiniabactin synthesis.
Conclusions: The HMWP1 and HMWP2 domain organization suggests that the yersiniabactin siderophore is assembled in a modular fashion, in which a series of covalent intermediates are passed from the amino terminus of HMWP2 to the carboxyl terminus of HMWP1. Biosynthetic labeling studies indicate that the three yersiniabactin methyl moieties are donated by
S-adenosylmethionine and that the linker between the thiazoline and thiazolidine rings is derived from malonyl-CoA. The salicylate moiety is probably synthesized using the aromatic amino-acid biosynthetic pathway, the final step of which converts chorismate to salicylate. YbtS might be necessary for converting chorismate to salicylate. |
doi_str_mv | 10.1016/S1074-5521(98)90115-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70053808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1074552198901156</els_id><sourcerecordid>70053808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-960251eee1709b70093aa335ca979090659ea5316673ec737d5a0389e3f106eb3</originalsourceid><addsrcrecordid>eNqFUctOHDEQtKJEQEg-AWlOKByGdOP1KxeEEAlISBwgh5wsj6dn5WhmvNgzkZavx_sIV079qOouqYqxE4RzBJTfHxHUohbiAr8ZfWYAUdTyAztCrUyNHPBj6f9TDtnnnP8CAGojD9iB0ahxYY5Yd5fiWDn_PIccplD6MFar3i1n-lENsZ17l6o-LoPfADS-rAc3laEJcUkj5ZCr2FVrSjmMwTXOT4XWrKs_-021ojyF_IV96lyf6eu-HrPfP2-erm_r-4dfd9dX97VfGJhqI-FCIBGhAtMoAMOd41x4Z5QBA1IYcoKjlIqTV1y1wgHXhniHIKnhx-x093eV4vNcpO0Qsqe-dyPFOdvyUnAN-l0iKlSccyhEsSP6FHNO1NlVCoNLa4tgN0HYbRB247I12m6DsLLcnewF5mag9u1q73zBL3c4FTv-BUo2-0CjpzYk8pNtY3hH4RU31JgI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17173330</pqid></control><display><type>article</type><title>Iron acquisition in plague: modular logic in enzymatic biogenesis of yersiniabactin by Yersinia pestis</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Gehring, Amy M. ; DeMoll, Edward ; Fetherston, Jacqueline D. ; Mori, Ichiro ; Mayhew, George F. ; Blattner, Frederick R. ; Walsh, Christopher T. ; Perry, Robert D.</creator><creatorcontrib>Gehring, Amy M. ; DeMoll, Edward ; Fetherston, Jacqueline D. ; Mori, Ichiro ; Mayhew, George F. ; Blattner, Frederick R. ; Walsh, Christopher T. ; Perry, Robert D.</creatorcontrib><description>Background: Virulence in the pathogenic bacterium
Yersinia pestis, causative agent of bubonic plague, has been correlated with the biosynthesis and transport of an iron-chelating siderophore, yersiniabactin, which is induced under iron-starvation conditions. Initial DNA sequencing suggested that this system is highly conserved among the pathogenic
Yersinia. Yersiniabactin contains a phenolic group and three five-membered thiazole heterocycles that serve as iron ligands.
Results: The entire
Y. pestis yersiniabactin region has been sequenced. Sequence analysis of yersiniabactin biosynthetic regions (
irp2-ybtE and
ybtS) reveals a strategy for siderophore production using a mixed polyketide synthase/nonribosomal peptide synthetase complex formed between HMWP1 and HMWP2 (encoded by
irp1 and
irp2). The complex contains 16 domains, five of them variants of phosphopantetheine-modified peptidyl carrier protein or acyl carrier protein domains. HMWP1 and HMWP2 also contain methyltransferase and heterocyclization domains. Mutating
ybtS revealed that this gene encodes a protein essential for yersiniabactin synthesis.
Conclusions: The HMWP1 and HMWP2 domain organization suggests that the yersiniabactin siderophore is assembled in a modular fashion, in which a series of covalent intermediates are passed from the amino terminus of HMWP2 to the carboxyl terminus of HMWP1. Biosynthetic labeling studies indicate that the three yersiniabactin methyl moieties are donated by
S-adenosylmethionine and that the linker between the thiazoline and thiazolidine rings is derived from malonyl-CoA. The salicylate moiety is probably synthesized using the aromatic amino-acid biosynthetic pathway, the final step of which converts chorismate to salicylate. YbtS might be necessary for converting chorismate to salicylate.</description><identifier>ISSN: 1074-5521</identifier><identifier>EISSN: 1879-1301</identifier><identifier>DOI: 10.1016/S1074-5521(98)90115-6</identifier><identifier>PMID: 9818149</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Amino Acid Sequence ; Bacterial Outer Membrane Proteins ; Bacterial Proteins - chemistry ; Bacterial Proteins - metabolism ; Base Sequence ; DNA Primers ; heterocyclization ; Iron - metabolism ; Iron-Binding Proteins ; Molecular Sequence Data ; Multienzyme Complexes - metabolism ; nonribosomal peptide synthetase ; Periplasmic Binding Proteins ; Phenols ; Plague - metabolism ; polyketide synthase ; Salicylic Acid - metabolism ; Sequence Homology, Amino Acid ; siderophore ; Siderophores - biosynthesis ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization ; Thiazoles ; Virulence ; Yersinia pestis ; Yersinia pestis - metabolism ; Yersinia pestis - pathogenicity ; yersiniabactin</subject><ispartof>Chemistry & biology, 1998-10, Vol.5 (10), p.573-586</ispartof><rights>1998</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-960251eee1709b70093aa335ca979090659ea5316673ec737d5a0389e3f106eb3</citedby><cites>FETCH-LOGICAL-c490t-960251eee1709b70093aa335ca979090659ea5316673ec737d5a0389e3f106eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S1074-5521(98)90115-6$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9818149$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gehring, Amy M.</creatorcontrib><creatorcontrib>DeMoll, Edward</creatorcontrib><creatorcontrib>Fetherston, Jacqueline D.</creatorcontrib><creatorcontrib>Mori, Ichiro</creatorcontrib><creatorcontrib>Mayhew, George F.</creatorcontrib><creatorcontrib>Blattner, Frederick R.</creatorcontrib><creatorcontrib>Walsh, Christopher T.</creatorcontrib><creatorcontrib>Perry, Robert D.</creatorcontrib><title>Iron acquisition in plague: modular logic in enzymatic biogenesis of yersiniabactin by Yersinia pestis</title><title>Chemistry & biology</title><addtitle>Chem Biol</addtitle><description>Background: Virulence in the pathogenic bacterium
Yersinia pestis, causative agent of bubonic plague, has been correlated with the biosynthesis and transport of an iron-chelating siderophore, yersiniabactin, which is induced under iron-starvation conditions. Initial DNA sequencing suggested that this system is highly conserved among the pathogenic
Yersinia. Yersiniabactin contains a phenolic group and three five-membered thiazole heterocycles that serve as iron ligands.
Results: The entire
Y. pestis yersiniabactin region has been sequenced. Sequence analysis of yersiniabactin biosynthetic regions (
irp2-ybtE and
ybtS) reveals a strategy for siderophore production using a mixed polyketide synthase/nonribosomal peptide synthetase complex formed between HMWP1 and HMWP2 (encoded by
irp1 and
irp2). The complex contains 16 domains, five of them variants of phosphopantetheine-modified peptidyl carrier protein or acyl carrier protein domains. HMWP1 and HMWP2 also contain methyltransferase and heterocyclization domains. Mutating
ybtS revealed that this gene encodes a protein essential for yersiniabactin synthesis.
Conclusions: The HMWP1 and HMWP2 domain organization suggests that the yersiniabactin siderophore is assembled in a modular fashion, in which a series of covalent intermediates are passed from the amino terminus of HMWP2 to the carboxyl terminus of HMWP1. Biosynthetic labeling studies indicate that the three yersiniabactin methyl moieties are donated by
S-adenosylmethionine and that the linker between the thiazoline and thiazolidine rings is derived from malonyl-CoA. The salicylate moiety is probably synthesized using the aromatic amino-acid biosynthetic pathway, the final step of which converts chorismate to salicylate. YbtS might be necessary for converting chorismate to salicylate.</description><subject>Amino Acid Sequence</subject><subject>Bacterial Outer Membrane Proteins</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - metabolism</subject><subject>Base Sequence</subject><subject>DNA Primers</subject><subject>heterocyclization</subject><subject>Iron - metabolism</subject><subject>Iron-Binding Proteins</subject><subject>Molecular Sequence Data</subject><subject>Multienzyme Complexes - metabolism</subject><subject>nonribosomal peptide synthetase</subject><subject>Periplasmic Binding Proteins</subject><subject>Phenols</subject><subject>Plague - metabolism</subject><subject>polyketide synthase</subject><subject>Salicylic Acid - metabolism</subject><subject>Sequence Homology, Amino Acid</subject><subject>siderophore</subject><subject>Siderophores - biosynthesis</subject><subject>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</subject><subject>Thiazoles</subject><subject>Virulence</subject><subject>Yersinia pestis</subject><subject>Yersinia pestis - metabolism</subject><subject>Yersinia pestis - pathogenicity</subject><subject>yersiniabactin</subject><issn>1074-5521</issn><issn>1879-1301</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUctOHDEQtKJEQEg-AWlOKByGdOP1KxeEEAlISBwgh5wsj6dn5WhmvNgzkZavx_sIV079qOouqYqxE4RzBJTfHxHUohbiAr8ZfWYAUdTyAztCrUyNHPBj6f9TDtnnnP8CAGojD9iB0ahxYY5Yd5fiWDn_PIccplD6MFar3i1n-lENsZ17l6o-LoPfADS-rAc3laEJcUkj5ZCr2FVrSjmMwTXOT4XWrKs_-021ojyF_IV96lyf6eu-HrPfP2-erm_r-4dfd9dX97VfGJhqI-FCIBGhAtMoAMOd41x4Z5QBA1IYcoKjlIqTV1y1wgHXhniHIKnhx-x093eV4vNcpO0Qsqe-dyPFOdvyUnAN-l0iKlSccyhEsSP6FHNO1NlVCoNLa4tgN0HYbRB247I12m6DsLLcnewF5mag9u1q73zBL3c4FTv-BUo2-0CjpzYk8pNtY3hH4RU31JgI</recordid><startdate>19981001</startdate><enddate>19981001</enddate><creator>Gehring, Amy M.</creator><creator>DeMoll, Edward</creator><creator>Fetherston, Jacqueline D.</creator><creator>Mori, Ichiro</creator><creator>Mayhew, George F.</creator><creator>Blattner, Frederick R.</creator><creator>Walsh, Christopher T.</creator><creator>Perry, Robert D.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>19981001</creationdate><title>Iron acquisition in plague: modular logic in enzymatic biogenesis of yersiniabactin by Yersinia pestis</title><author>Gehring, Amy M. ; DeMoll, Edward ; Fetherston, Jacqueline D. ; Mori, Ichiro ; Mayhew, George F. ; Blattner, Frederick R. ; Walsh, Christopher T. ; Perry, Robert D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-960251eee1709b70093aa335ca979090659ea5316673ec737d5a0389e3f106eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Amino Acid Sequence</topic><topic>Bacterial Outer Membrane Proteins</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - metabolism</topic><topic>Base Sequence</topic><topic>DNA Primers</topic><topic>heterocyclization</topic><topic>Iron - metabolism</topic><topic>Iron-Binding Proteins</topic><topic>Molecular Sequence Data</topic><topic>Multienzyme Complexes - metabolism</topic><topic>nonribosomal peptide synthetase</topic><topic>Periplasmic Binding Proteins</topic><topic>Phenols</topic><topic>Plague - metabolism</topic><topic>polyketide synthase</topic><topic>Salicylic Acid - metabolism</topic><topic>Sequence Homology, Amino Acid</topic><topic>siderophore</topic><topic>Siderophores - biosynthesis</topic><topic>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</topic><topic>Thiazoles</topic><topic>Virulence</topic><topic>Yersinia pestis</topic><topic>Yersinia pestis - metabolism</topic><topic>Yersinia pestis - pathogenicity</topic><topic>yersiniabactin</topic><toplevel>online_resources</toplevel><creatorcontrib>Gehring, Amy M.</creatorcontrib><creatorcontrib>DeMoll, Edward</creatorcontrib><creatorcontrib>Fetherston, Jacqueline D.</creatorcontrib><creatorcontrib>Mori, Ichiro</creatorcontrib><creatorcontrib>Mayhew, George F.</creatorcontrib><creatorcontrib>Blattner, Frederick R.</creatorcontrib><creatorcontrib>Walsh, Christopher T.</creatorcontrib><creatorcontrib>Perry, Robert D.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry & biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gehring, Amy M.</au><au>DeMoll, Edward</au><au>Fetherston, Jacqueline D.</au><au>Mori, Ichiro</au><au>Mayhew, George F.</au><au>Blattner, Frederick R.</au><au>Walsh, Christopher T.</au><au>Perry, Robert D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iron acquisition in plague: modular logic in enzymatic biogenesis of yersiniabactin by Yersinia pestis</atitle><jtitle>Chemistry & biology</jtitle><addtitle>Chem Biol</addtitle><date>1998-10-01</date><risdate>1998</risdate><volume>5</volume><issue>10</issue><spage>573</spage><epage>586</epage><pages>573-586</pages><issn>1074-5521</issn><eissn>1879-1301</eissn><abstract>Background: Virulence in the pathogenic bacterium
Yersinia pestis, causative agent of bubonic plague, has been correlated with the biosynthesis and transport of an iron-chelating siderophore, yersiniabactin, which is induced under iron-starvation conditions. Initial DNA sequencing suggested that this system is highly conserved among the pathogenic
Yersinia. Yersiniabactin contains a phenolic group and three five-membered thiazole heterocycles that serve as iron ligands.
Results: The entire
Y. pestis yersiniabactin region has been sequenced. Sequence analysis of yersiniabactin biosynthetic regions (
irp2-ybtE and
ybtS) reveals a strategy for siderophore production using a mixed polyketide synthase/nonribosomal peptide synthetase complex formed between HMWP1 and HMWP2 (encoded by
irp1 and
irp2). The complex contains 16 domains, five of them variants of phosphopantetheine-modified peptidyl carrier protein or acyl carrier protein domains. HMWP1 and HMWP2 also contain methyltransferase and heterocyclization domains. Mutating
ybtS revealed that this gene encodes a protein essential for yersiniabactin synthesis.
Conclusions: The HMWP1 and HMWP2 domain organization suggests that the yersiniabactin siderophore is assembled in a modular fashion, in which a series of covalent intermediates are passed from the amino terminus of HMWP2 to the carboxyl terminus of HMWP1. Biosynthetic labeling studies indicate that the three yersiniabactin methyl moieties are donated by
S-adenosylmethionine and that the linker between the thiazoline and thiazolidine rings is derived from malonyl-CoA. The salicylate moiety is probably synthesized using the aromatic amino-acid biosynthetic pathway, the final step of which converts chorismate to salicylate. YbtS might be necessary for converting chorismate to salicylate.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>9818149</pmid><doi>10.1016/S1074-5521(98)90115-6</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1074-5521 |
ispartof | Chemistry & biology, 1998-10, Vol.5 (10), p.573-586 |
issn | 1074-5521 1879-1301 |
language | eng |
recordid | cdi_proquest_miscellaneous_70053808 |
source | MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry |
subjects | Amino Acid Sequence Bacterial Outer Membrane Proteins Bacterial Proteins - chemistry Bacterial Proteins - metabolism Base Sequence DNA Primers heterocyclization Iron - metabolism Iron-Binding Proteins Molecular Sequence Data Multienzyme Complexes - metabolism nonribosomal peptide synthetase Periplasmic Binding Proteins Phenols Plague - metabolism polyketide synthase Salicylic Acid - metabolism Sequence Homology, Amino Acid siderophore Siderophores - biosynthesis Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization Thiazoles Virulence Yersinia pestis Yersinia pestis - metabolism Yersinia pestis - pathogenicity yersiniabactin |
title | Iron acquisition in plague: modular logic in enzymatic biogenesis of yersiniabactin by Yersinia pestis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A50%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iron%20acquisition%20in%20plague:%20modular%20logic%20in%20enzymatic%20biogenesis%20of%20yersiniabactin%20by%20Yersinia%20pestis&rft.jtitle=Chemistry%20&%20biology&rft.au=Gehring,%20Amy%20M.&rft.date=1998-10-01&rft.volume=5&rft.issue=10&rft.spage=573&rft.epage=586&rft.pages=573-586&rft.issn=1074-5521&rft.eissn=1879-1301&rft_id=info:doi/10.1016/S1074-5521(98)90115-6&rft_dat=%3Cproquest_cross%3E70053808%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17173330&rft_id=info:pmid/9818149&rft_els_id=S1074552198901156&rfr_iscdi=true |