Iron acquisition in plague: modular logic in enzymatic biogenesis of yersiniabactin by Yersinia pestis

Background: Virulence in the pathogenic bacterium Yersinia pestis, causative agent of bubonic plague, has been correlated with the biosynthesis and transport of an iron-chelating siderophore, yersiniabactin, which is induced under iron-starvation conditions. Initial DNA sequencing suggested that thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry & biology 1998-10, Vol.5 (10), p.573-586
Hauptverfasser: Gehring, Amy M., DeMoll, Edward, Fetherston, Jacqueline D., Mori, Ichiro, Mayhew, George F., Blattner, Frederick R., Walsh, Christopher T., Perry, Robert D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 586
container_issue 10
container_start_page 573
container_title Chemistry & biology
container_volume 5
creator Gehring, Amy M.
DeMoll, Edward
Fetherston, Jacqueline D.
Mori, Ichiro
Mayhew, George F.
Blattner, Frederick R.
Walsh, Christopher T.
Perry, Robert D.
description Background: Virulence in the pathogenic bacterium Yersinia pestis, causative agent of bubonic plague, has been correlated with the biosynthesis and transport of an iron-chelating siderophore, yersiniabactin, which is induced under iron-starvation conditions. Initial DNA sequencing suggested that this system is highly conserved among the pathogenic Yersinia. Yersiniabactin contains a phenolic group and three five-membered thiazole heterocycles that serve as iron ligands. Results: The entire Y. pestis yersiniabactin region has been sequenced. Sequence analysis of yersiniabactin biosynthetic regions ( irp2-ybtE and ybtS) reveals a strategy for siderophore production using a mixed polyketide synthase/nonribosomal peptide synthetase complex formed between HMWP1 and HMWP2 (encoded by irp1 and irp2). The complex contains 16 domains, five of them variants of phosphopantetheine-modified peptidyl carrier protein or acyl carrier protein domains. HMWP1 and HMWP2 also contain methyltransferase and heterocyclization domains. Mutating ybtS revealed that this gene encodes a protein essential for yersiniabactin synthesis. Conclusions: The HMWP1 and HMWP2 domain organization suggests that the yersiniabactin siderophore is assembled in a modular fashion, in which a series of covalent intermediates are passed from the amino terminus of HMWP2 to the carboxyl terminus of HMWP1. Biosynthetic labeling studies indicate that the three yersiniabactin methyl moieties are donated by S-adenosylmethionine and that the linker between the thiazoline and thiazolidine rings is derived from malonyl-CoA. The salicylate moiety is probably synthesized using the aromatic amino-acid biosynthetic pathway, the final step of which converts chorismate to salicylate. YbtS might be necessary for converting chorismate to salicylate.
doi_str_mv 10.1016/S1074-5521(98)90115-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70053808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1074552198901156</els_id><sourcerecordid>70053808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-960251eee1709b70093aa335ca979090659ea5316673ec737d5a0389e3f106eb3</originalsourceid><addsrcrecordid>eNqFUctOHDEQtKJEQEg-AWlOKByGdOP1KxeEEAlISBwgh5wsj6dn5WhmvNgzkZavx_sIV079qOouqYqxE4RzBJTfHxHUohbiAr8ZfWYAUdTyAztCrUyNHPBj6f9TDtnnnP8CAGojD9iB0ahxYY5Yd5fiWDn_PIccplD6MFar3i1n-lENsZ17l6o-LoPfADS-rAc3laEJcUkj5ZCr2FVrSjmMwTXOT4XWrKs_-021ojyF_IV96lyf6eu-HrPfP2-erm_r-4dfd9dX97VfGJhqI-FCIBGhAtMoAMOd41x4Z5QBA1IYcoKjlIqTV1y1wgHXhniHIKnhx-x093eV4vNcpO0Qsqe-dyPFOdvyUnAN-l0iKlSccyhEsSP6FHNO1NlVCoNLa4tgN0HYbRB247I12m6DsLLcnewF5mag9u1q73zBL3c4FTv-BUo2-0CjpzYk8pNtY3hH4RU31JgI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17173330</pqid></control><display><type>article</type><title>Iron acquisition in plague: modular logic in enzymatic biogenesis of yersiniabactin by Yersinia pestis</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Gehring, Amy M. ; DeMoll, Edward ; Fetherston, Jacqueline D. ; Mori, Ichiro ; Mayhew, George F. ; Blattner, Frederick R. ; Walsh, Christopher T. ; Perry, Robert D.</creator><creatorcontrib>Gehring, Amy M. ; DeMoll, Edward ; Fetherston, Jacqueline D. ; Mori, Ichiro ; Mayhew, George F. ; Blattner, Frederick R. ; Walsh, Christopher T. ; Perry, Robert D.</creatorcontrib><description>Background: Virulence in the pathogenic bacterium Yersinia pestis, causative agent of bubonic plague, has been correlated with the biosynthesis and transport of an iron-chelating siderophore, yersiniabactin, which is induced under iron-starvation conditions. Initial DNA sequencing suggested that this system is highly conserved among the pathogenic Yersinia. Yersiniabactin contains a phenolic group and three five-membered thiazole heterocycles that serve as iron ligands. Results: The entire Y. pestis yersiniabactin region has been sequenced. Sequence analysis of yersiniabactin biosynthetic regions ( irp2-ybtE and ybtS) reveals a strategy for siderophore production using a mixed polyketide synthase/nonribosomal peptide synthetase complex formed between HMWP1 and HMWP2 (encoded by irp1 and irp2). The complex contains 16 domains, five of them variants of phosphopantetheine-modified peptidyl carrier protein or acyl carrier protein domains. HMWP1 and HMWP2 also contain methyltransferase and heterocyclization domains. Mutating ybtS revealed that this gene encodes a protein essential for yersiniabactin synthesis. Conclusions: The HMWP1 and HMWP2 domain organization suggests that the yersiniabactin siderophore is assembled in a modular fashion, in which a series of covalent intermediates are passed from the amino terminus of HMWP2 to the carboxyl terminus of HMWP1. Biosynthetic labeling studies indicate that the three yersiniabactin methyl moieties are donated by S-adenosylmethionine and that the linker between the thiazoline and thiazolidine rings is derived from malonyl-CoA. The salicylate moiety is probably synthesized using the aromatic amino-acid biosynthetic pathway, the final step of which converts chorismate to salicylate. YbtS might be necessary for converting chorismate to salicylate.</description><identifier>ISSN: 1074-5521</identifier><identifier>EISSN: 1879-1301</identifier><identifier>DOI: 10.1016/S1074-5521(98)90115-6</identifier><identifier>PMID: 9818149</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Amino Acid Sequence ; Bacterial Outer Membrane Proteins ; Bacterial Proteins - chemistry ; Bacterial Proteins - metabolism ; Base Sequence ; DNA Primers ; heterocyclization ; Iron - metabolism ; Iron-Binding Proteins ; Molecular Sequence Data ; Multienzyme Complexes - metabolism ; nonribosomal peptide synthetase ; Periplasmic Binding Proteins ; Phenols ; Plague - metabolism ; polyketide synthase ; Salicylic Acid - metabolism ; Sequence Homology, Amino Acid ; siderophore ; Siderophores - biosynthesis ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization ; Thiazoles ; Virulence ; Yersinia pestis ; Yersinia pestis - metabolism ; Yersinia pestis - pathogenicity ; yersiniabactin</subject><ispartof>Chemistry &amp; biology, 1998-10, Vol.5 (10), p.573-586</ispartof><rights>1998</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-960251eee1709b70093aa335ca979090659ea5316673ec737d5a0389e3f106eb3</citedby><cites>FETCH-LOGICAL-c490t-960251eee1709b70093aa335ca979090659ea5316673ec737d5a0389e3f106eb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S1074-5521(98)90115-6$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9818149$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gehring, Amy M.</creatorcontrib><creatorcontrib>DeMoll, Edward</creatorcontrib><creatorcontrib>Fetherston, Jacqueline D.</creatorcontrib><creatorcontrib>Mori, Ichiro</creatorcontrib><creatorcontrib>Mayhew, George F.</creatorcontrib><creatorcontrib>Blattner, Frederick R.</creatorcontrib><creatorcontrib>Walsh, Christopher T.</creatorcontrib><creatorcontrib>Perry, Robert D.</creatorcontrib><title>Iron acquisition in plague: modular logic in enzymatic biogenesis of yersiniabactin by Yersinia pestis</title><title>Chemistry &amp; biology</title><addtitle>Chem Biol</addtitle><description>Background: Virulence in the pathogenic bacterium Yersinia pestis, causative agent of bubonic plague, has been correlated with the biosynthesis and transport of an iron-chelating siderophore, yersiniabactin, which is induced under iron-starvation conditions. Initial DNA sequencing suggested that this system is highly conserved among the pathogenic Yersinia. Yersiniabactin contains a phenolic group and three five-membered thiazole heterocycles that serve as iron ligands. Results: The entire Y. pestis yersiniabactin region has been sequenced. Sequence analysis of yersiniabactin biosynthetic regions ( irp2-ybtE and ybtS) reveals a strategy for siderophore production using a mixed polyketide synthase/nonribosomal peptide synthetase complex formed between HMWP1 and HMWP2 (encoded by irp1 and irp2). The complex contains 16 domains, five of them variants of phosphopantetheine-modified peptidyl carrier protein or acyl carrier protein domains. HMWP1 and HMWP2 also contain methyltransferase and heterocyclization domains. Mutating ybtS revealed that this gene encodes a protein essential for yersiniabactin synthesis. Conclusions: The HMWP1 and HMWP2 domain organization suggests that the yersiniabactin siderophore is assembled in a modular fashion, in which a series of covalent intermediates are passed from the amino terminus of HMWP2 to the carboxyl terminus of HMWP1. Biosynthetic labeling studies indicate that the three yersiniabactin methyl moieties are donated by S-adenosylmethionine and that the linker between the thiazoline and thiazolidine rings is derived from malonyl-CoA. The salicylate moiety is probably synthesized using the aromatic amino-acid biosynthetic pathway, the final step of which converts chorismate to salicylate. YbtS might be necessary for converting chorismate to salicylate.</description><subject>Amino Acid Sequence</subject><subject>Bacterial Outer Membrane Proteins</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - metabolism</subject><subject>Base Sequence</subject><subject>DNA Primers</subject><subject>heterocyclization</subject><subject>Iron - metabolism</subject><subject>Iron-Binding Proteins</subject><subject>Molecular Sequence Data</subject><subject>Multienzyme Complexes - metabolism</subject><subject>nonribosomal peptide synthetase</subject><subject>Periplasmic Binding Proteins</subject><subject>Phenols</subject><subject>Plague - metabolism</subject><subject>polyketide synthase</subject><subject>Salicylic Acid - metabolism</subject><subject>Sequence Homology, Amino Acid</subject><subject>siderophore</subject><subject>Siderophores - biosynthesis</subject><subject>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</subject><subject>Thiazoles</subject><subject>Virulence</subject><subject>Yersinia pestis</subject><subject>Yersinia pestis - metabolism</subject><subject>Yersinia pestis - pathogenicity</subject><subject>yersiniabactin</subject><issn>1074-5521</issn><issn>1879-1301</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUctOHDEQtKJEQEg-AWlOKByGdOP1KxeEEAlISBwgh5wsj6dn5WhmvNgzkZavx_sIV079qOouqYqxE4RzBJTfHxHUohbiAr8ZfWYAUdTyAztCrUyNHPBj6f9TDtnnnP8CAGojD9iB0ahxYY5Yd5fiWDn_PIccplD6MFar3i1n-lENsZ17l6o-LoPfADS-rAc3laEJcUkj5ZCr2FVrSjmMwTXOT4XWrKs_-021ojyF_IV96lyf6eu-HrPfP2-erm_r-4dfd9dX97VfGJhqI-FCIBGhAtMoAMOd41x4Z5QBA1IYcoKjlIqTV1y1wgHXhniHIKnhx-x093eV4vNcpO0Qsqe-dyPFOdvyUnAN-l0iKlSccyhEsSP6FHNO1NlVCoNLa4tgN0HYbRB247I12m6DsLLcnewF5mag9u1q73zBL3c4FTv-BUo2-0CjpzYk8pNtY3hH4RU31JgI</recordid><startdate>19981001</startdate><enddate>19981001</enddate><creator>Gehring, Amy M.</creator><creator>DeMoll, Edward</creator><creator>Fetherston, Jacqueline D.</creator><creator>Mori, Ichiro</creator><creator>Mayhew, George F.</creator><creator>Blattner, Frederick R.</creator><creator>Walsh, Christopher T.</creator><creator>Perry, Robert D.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>19981001</creationdate><title>Iron acquisition in plague: modular logic in enzymatic biogenesis of yersiniabactin by Yersinia pestis</title><author>Gehring, Amy M. ; DeMoll, Edward ; Fetherston, Jacqueline D. ; Mori, Ichiro ; Mayhew, George F. ; Blattner, Frederick R. ; Walsh, Christopher T. ; Perry, Robert D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-960251eee1709b70093aa335ca979090659ea5316673ec737d5a0389e3f106eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Amino Acid Sequence</topic><topic>Bacterial Outer Membrane Proteins</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - metabolism</topic><topic>Base Sequence</topic><topic>DNA Primers</topic><topic>heterocyclization</topic><topic>Iron - metabolism</topic><topic>Iron-Binding Proteins</topic><topic>Molecular Sequence Data</topic><topic>Multienzyme Complexes - metabolism</topic><topic>nonribosomal peptide synthetase</topic><topic>Periplasmic Binding Proteins</topic><topic>Phenols</topic><topic>Plague - metabolism</topic><topic>polyketide synthase</topic><topic>Salicylic Acid - metabolism</topic><topic>Sequence Homology, Amino Acid</topic><topic>siderophore</topic><topic>Siderophores - biosynthesis</topic><topic>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</topic><topic>Thiazoles</topic><topic>Virulence</topic><topic>Yersinia pestis</topic><topic>Yersinia pestis - metabolism</topic><topic>Yersinia pestis - pathogenicity</topic><topic>yersiniabactin</topic><toplevel>online_resources</toplevel><creatorcontrib>Gehring, Amy M.</creatorcontrib><creatorcontrib>DeMoll, Edward</creatorcontrib><creatorcontrib>Fetherston, Jacqueline D.</creatorcontrib><creatorcontrib>Mori, Ichiro</creatorcontrib><creatorcontrib>Mayhew, George F.</creatorcontrib><creatorcontrib>Blattner, Frederick R.</creatorcontrib><creatorcontrib>Walsh, Christopher T.</creatorcontrib><creatorcontrib>Perry, Robert D.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry &amp; biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gehring, Amy M.</au><au>DeMoll, Edward</au><au>Fetherston, Jacqueline D.</au><au>Mori, Ichiro</au><au>Mayhew, George F.</au><au>Blattner, Frederick R.</au><au>Walsh, Christopher T.</au><au>Perry, Robert D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iron acquisition in plague: modular logic in enzymatic biogenesis of yersiniabactin by Yersinia pestis</atitle><jtitle>Chemistry &amp; biology</jtitle><addtitle>Chem Biol</addtitle><date>1998-10-01</date><risdate>1998</risdate><volume>5</volume><issue>10</issue><spage>573</spage><epage>586</epage><pages>573-586</pages><issn>1074-5521</issn><eissn>1879-1301</eissn><abstract>Background: Virulence in the pathogenic bacterium Yersinia pestis, causative agent of bubonic plague, has been correlated with the biosynthesis and transport of an iron-chelating siderophore, yersiniabactin, which is induced under iron-starvation conditions. Initial DNA sequencing suggested that this system is highly conserved among the pathogenic Yersinia. Yersiniabactin contains a phenolic group and three five-membered thiazole heterocycles that serve as iron ligands. Results: The entire Y. pestis yersiniabactin region has been sequenced. Sequence analysis of yersiniabactin biosynthetic regions ( irp2-ybtE and ybtS) reveals a strategy for siderophore production using a mixed polyketide synthase/nonribosomal peptide synthetase complex formed between HMWP1 and HMWP2 (encoded by irp1 and irp2). The complex contains 16 domains, five of them variants of phosphopantetheine-modified peptidyl carrier protein or acyl carrier protein domains. HMWP1 and HMWP2 also contain methyltransferase and heterocyclization domains. Mutating ybtS revealed that this gene encodes a protein essential for yersiniabactin synthesis. Conclusions: The HMWP1 and HMWP2 domain organization suggests that the yersiniabactin siderophore is assembled in a modular fashion, in which a series of covalent intermediates are passed from the amino terminus of HMWP2 to the carboxyl terminus of HMWP1. Biosynthetic labeling studies indicate that the three yersiniabactin methyl moieties are donated by S-adenosylmethionine and that the linker between the thiazoline and thiazolidine rings is derived from malonyl-CoA. The salicylate moiety is probably synthesized using the aromatic amino-acid biosynthetic pathway, the final step of which converts chorismate to salicylate. YbtS might be necessary for converting chorismate to salicylate.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>9818149</pmid><doi>10.1016/S1074-5521(98)90115-6</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1074-5521
ispartof Chemistry & biology, 1998-10, Vol.5 (10), p.573-586
issn 1074-5521
1879-1301
language eng
recordid cdi_proquest_miscellaneous_70053808
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry
subjects Amino Acid Sequence
Bacterial Outer Membrane Proteins
Bacterial Proteins - chemistry
Bacterial Proteins - metabolism
Base Sequence
DNA Primers
heterocyclization
Iron - metabolism
Iron-Binding Proteins
Molecular Sequence Data
Multienzyme Complexes - metabolism
nonribosomal peptide synthetase
Periplasmic Binding Proteins
Phenols
Plague - metabolism
polyketide synthase
Salicylic Acid - metabolism
Sequence Homology, Amino Acid
siderophore
Siderophores - biosynthesis
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Thiazoles
Virulence
Yersinia pestis
Yersinia pestis - metabolism
Yersinia pestis - pathogenicity
yersiniabactin
title Iron acquisition in plague: modular logic in enzymatic biogenesis of yersiniabactin by Yersinia pestis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T12%3A50%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iron%20acquisition%20in%20plague:%20modular%20logic%20in%20enzymatic%20biogenesis%20of%20yersiniabactin%20by%20Yersinia%20pestis&rft.jtitle=Chemistry%20&%20biology&rft.au=Gehring,%20Amy%20M.&rft.date=1998-10-01&rft.volume=5&rft.issue=10&rft.spage=573&rft.epage=586&rft.pages=573-586&rft.issn=1074-5521&rft.eissn=1879-1301&rft_id=info:doi/10.1016/S1074-5521(98)90115-6&rft_dat=%3Cproquest_cross%3E70053808%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17173330&rft_id=info:pmid/9818149&rft_els_id=S1074552198901156&rfr_iscdi=true