Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging
The optimization of acquisition parameters for precise measurement of diffusion in anisotropic systems is described. First, an algorithm is presented that minimizes the bias inherent in making measurements with a fixed set of gradient vector directions by spreading out measurements in 3‐dimensional...
Gespeichert in:
Veröffentlicht in: | Magnetic resonance in medicine 1999-09, Vol.42 (3), p.515-525 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 525 |
---|---|
container_issue | 3 |
container_start_page | 515 |
container_title | Magnetic resonance in medicine |
container_volume | 42 |
creator | Jones, D.K. Horsfield, M.A. Simmons, A. |
description | The optimization of acquisition parameters for precise measurement of diffusion in anisotropic systems is described. First, an algorithm is presented that minimizes the bias inherent in making measurements with a fixed set of gradient vector directions by spreading out measurements in 3‐dimensional gradient vector space. Next, it is shown how the set of b—matrices and echo time can be optimized for estimating the diffusion tensor and its scalar invariants. The standard deviation in the estimate of the tensor trace in a water phantom was reduced by more than 40% and the artefactual anisotropy was reduced by more than 60% when using the optimized scheme compared with a more conventional scheme for the same scan time, and marked improvements are demonstrated in the human brain with the optimized sequences. Use of these optimal schemes results in reduced scan times, increased precision, or improved resolution in diffusion tensor images. Magn Reson Med 42:515–525, 1999. © 1999 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/(SICI)1522-2594(199909)42:3<515::AID-MRM14>3.0.CO;2-Q |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_70012764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>70012764</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4234-fbe06abb412e9d06bc2010fbd2c245bb60201d5411c5eb84bd6dafc7f5dbc6913</originalsourceid><addsrcrecordid>eNqFkV2LEzEUhoMobl39C5ILkd2LqUkmM9N0VVhGXYutpauu4M0hySQlOh81maL996Y7pQoKXoUc3jy85wlCLygZU0LYs7MPs3J2TjPGEpYJfkaFEEScczZNn2c0m04vZ6-SxfWC8pfpmIzL5QVLVnfQ6PjiLhqRgpMkpYKfoAchfCWECFHw--iEEp4XTOQjBMtN7xpZ49B72Zu1MwHbzuPGyLD1rl3jylm7Da5rsWuxbF3oet9tnMZhF3rTBKx2uJHr1vRx5k3oWtlqgyN0HZ8_RPesrIN5dDhP0ac3rz-Wb5P58mpWXs4TzVnKE6sMyaVSnDIjKpIrzQglVlVMM54plZN4rzJOqc6MmnBV5ZW0urBZpXQuaHqKng7cje--b03ooXFBm7qWrem2AQpCKCtynh4LaN-F4I2FjY9d_Q4ogb15gL152HuEvUcYzANnkEI0DxDNw635OCBQLoHBKnIfHwpsVWOqP6iD6hh4cgjIoGVtfdTkwu-c4JPJ7SI3Q-yHq83ur3L_6favasMggpMB7OK3_TyCpf8GeZEWGXx-fwX0y_x6cbN6Fxf6BYLovQk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70012764</pqid></control><display><type>article</type><title>Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Jones, D.K. ; Horsfield, M.A. ; Simmons, A.</creator><creatorcontrib>Jones, D.K. ; Horsfield, M.A. ; Simmons, A.</creatorcontrib><description>The optimization of acquisition parameters for precise measurement of diffusion in anisotropic systems is described. First, an algorithm is presented that minimizes the bias inherent in making measurements with a fixed set of gradient vector directions by spreading out measurements in 3‐dimensional gradient vector space. Next, it is shown how the set of b—matrices and echo time can be optimized for estimating the diffusion tensor and its scalar invariants. The standard deviation in the estimate of the tensor trace in a water phantom was reduced by more than 40% and the artefactual anisotropy was reduced by more than 60% when using the optimized scheme compared with a more conventional scheme for the same scan time, and marked improvements are demonstrated in the human brain with the optimized sequences. Use of these optimal schemes results in reduced scan times, increased precision, or improved resolution in diffusion tensor images. Magn Reson Med 42:515–525, 1999. © 1999 Wiley‐Liss, Inc.</description><identifier>ISSN: 0740-3194</identifier><identifier>EISSN: 1522-2594</identifier><identifier>DOI: 10.1002/(SICI)1522-2594(199909)42:3<515::AID-MRM14>3.0.CO;2-Q</identifier><identifier>PMID: 10467296</identifier><identifier>CODEN: MRMEEN</identifier><language>eng</language><publisher>New York: John Wiley & Sons, Inc</publisher><subject>Adult ; Algorithms ; Anisotropy ; Biological and medical sciences ; Brain - anatomy & histology ; Diffusion ; diffusion tensor ; Humans ; Investigative techniques, diagnostic techniques (general aspects) ; Linear Models ; magnetic resonance ; Magnetic Resonance Imaging - methods ; Medical sciences ; Miscellaneous. Technology ; Models, Structural ; optimization ; Phantoms, Imaging ; Radiodiagnosis. Nmr imagery. Nmr spectrometry ; Water</subject><ispartof>Magnetic resonance in medicine, 1999-09, Vol.42 (3), p.515-525</ispartof><rights>Copyright © 1999 Wiley‐Liss, Inc.</rights><rights>1999 INIST-CNRS</rights><rights>Copyright 1999 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4234-fbe06abb412e9d06bc2010fbd2c245bb60201d5411c5eb84bd6dafc7f5dbc6913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F%28SICI%291522-2594%28199909%2942%3A3%3C515%3A%3AAID-MRM14%3E3.0.CO%3B2-Q$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F%28SICI%291522-2594%28199909%2942%3A3%3C515%3A%3AAID-MRM14%3E3.0.CO%3B2-Q$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1948891$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10467296$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jones, D.K.</creatorcontrib><creatorcontrib>Horsfield, M.A.</creatorcontrib><creatorcontrib>Simmons, A.</creatorcontrib><title>Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging</title><title>Magnetic resonance in medicine</title><addtitle>Magn. Reson. Med</addtitle><description>The optimization of acquisition parameters for precise measurement of diffusion in anisotropic systems is described. First, an algorithm is presented that minimizes the bias inherent in making measurements with a fixed set of gradient vector directions by spreading out measurements in 3‐dimensional gradient vector space. Next, it is shown how the set of b—matrices and echo time can be optimized for estimating the diffusion tensor and its scalar invariants. The standard deviation in the estimate of the tensor trace in a water phantom was reduced by more than 40% and the artefactual anisotropy was reduced by more than 60% when using the optimized scheme compared with a more conventional scheme for the same scan time, and marked improvements are demonstrated in the human brain with the optimized sequences. Use of these optimal schemes results in reduced scan times, increased precision, or improved resolution in diffusion tensor images. Magn Reson Med 42:515–525, 1999. © 1999 Wiley‐Liss, Inc.</description><subject>Adult</subject><subject>Algorithms</subject><subject>Anisotropy</subject><subject>Biological and medical sciences</subject><subject>Brain - anatomy & histology</subject><subject>Diffusion</subject><subject>diffusion tensor</subject><subject>Humans</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Linear Models</subject><subject>magnetic resonance</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Medical sciences</subject><subject>Miscellaneous. Technology</subject><subject>Models, Structural</subject><subject>optimization</subject><subject>Phantoms, Imaging</subject><subject>Radiodiagnosis. Nmr imagery. Nmr spectrometry</subject><subject>Water</subject><issn>0740-3194</issn><issn>1522-2594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkV2LEzEUhoMobl39C5ILkd2LqUkmM9N0VVhGXYutpauu4M0hySQlOh81maL996Y7pQoKXoUc3jy85wlCLygZU0LYs7MPs3J2TjPGEpYJfkaFEEScczZNn2c0m04vZ6-SxfWC8pfpmIzL5QVLVnfQ6PjiLhqRgpMkpYKfoAchfCWECFHw--iEEp4XTOQjBMtN7xpZ49B72Zu1MwHbzuPGyLD1rl3jylm7Da5rsWuxbF3oet9tnMZhF3rTBKx2uJHr1vRx5k3oWtlqgyN0HZ8_RPesrIN5dDhP0ac3rz-Wb5P58mpWXs4TzVnKE6sMyaVSnDIjKpIrzQglVlVMM54plZN4rzJOqc6MmnBV5ZW0urBZpXQuaHqKng7cje--b03ooXFBm7qWrem2AQpCKCtynh4LaN-F4I2FjY9d_Q4ogb15gL152HuEvUcYzANnkEI0DxDNw635OCBQLoHBKnIfHwpsVWOqP6iD6hh4cgjIoGVtfdTkwu-c4JPJ7SI3Q-yHq83ur3L_6favasMggpMB7OK3_TyCpf8GeZEWGXx-fwX0y_x6cbN6Fxf6BYLovQk</recordid><startdate>199909</startdate><enddate>199909</enddate><creator>Jones, D.K.</creator><creator>Horsfield, M.A.</creator><creator>Simmons, A.</creator><general>John Wiley & Sons, Inc</general><general>Williams & Wilkins</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>199909</creationdate><title>Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging</title><author>Jones, D.K. ; Horsfield, M.A. ; Simmons, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4234-fbe06abb412e9d06bc2010fbd2c245bb60201d5411c5eb84bd6dafc7f5dbc6913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Anisotropy</topic><topic>Biological and medical sciences</topic><topic>Brain - anatomy & histology</topic><topic>Diffusion</topic><topic>diffusion tensor</topic><topic>Humans</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Linear Models</topic><topic>magnetic resonance</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Medical sciences</topic><topic>Miscellaneous. Technology</topic><topic>Models, Structural</topic><topic>optimization</topic><topic>Phantoms, Imaging</topic><topic>Radiodiagnosis. Nmr imagery. Nmr spectrometry</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jones, D.K.</creatorcontrib><creatorcontrib>Horsfield, M.A.</creatorcontrib><creatorcontrib>Simmons, A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jones, D.K.</au><au>Horsfield, M.A.</au><au>Simmons, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging</atitle><jtitle>Magnetic resonance in medicine</jtitle><addtitle>Magn. Reson. Med</addtitle><date>1999-09</date><risdate>1999</risdate><volume>42</volume><issue>3</issue><spage>515</spage><epage>525</epage><pages>515-525</pages><issn>0740-3194</issn><eissn>1522-2594</eissn><coden>MRMEEN</coden><abstract>The optimization of acquisition parameters for precise measurement of diffusion in anisotropic systems is described. First, an algorithm is presented that minimizes the bias inherent in making measurements with a fixed set of gradient vector directions by spreading out measurements in 3‐dimensional gradient vector space. Next, it is shown how the set of b—matrices and echo time can be optimized for estimating the diffusion tensor and its scalar invariants. The standard deviation in the estimate of the tensor trace in a water phantom was reduced by more than 40% and the artefactual anisotropy was reduced by more than 60% when using the optimized scheme compared with a more conventional scheme for the same scan time, and marked improvements are demonstrated in the human brain with the optimized sequences. Use of these optimal schemes results in reduced scan times, increased precision, or improved resolution in diffusion tensor images. Magn Reson Med 42:515–525, 1999. © 1999 Wiley‐Liss, Inc.</abstract><cop>New York</cop><pub>John Wiley & Sons, Inc</pub><pmid>10467296</pmid><doi>10.1002/(SICI)1522-2594(199909)42:3<515::AID-MRM14>3.0.CO;2-Q</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0740-3194 |
ispartof | Magnetic resonance in medicine, 1999-09, Vol.42 (3), p.515-525 |
issn | 0740-3194 1522-2594 |
language | eng |
recordid | cdi_proquest_miscellaneous_70012764 |
source | Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Adult Algorithms Anisotropy Biological and medical sciences Brain - anatomy & histology Diffusion diffusion tensor Humans Investigative techniques, diagnostic techniques (general aspects) Linear Models magnetic resonance Magnetic Resonance Imaging - methods Medical sciences Miscellaneous. Technology Models, Structural optimization Phantoms, Imaging Radiodiagnosis. Nmr imagery. Nmr spectrometry Water |
title | Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T02%3A28%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20strategies%20for%20measuring%20diffusion%20in%20anisotropic%20systems%20by%20magnetic%20resonance%20imaging&rft.jtitle=Magnetic%20resonance%20in%20medicine&rft.au=Jones,%20D.K.&rft.date=1999-09&rft.volume=42&rft.issue=3&rft.spage=515&rft.epage=525&rft.pages=515-525&rft.issn=0740-3194&rft.eissn=1522-2594&rft.coden=MRMEEN&rft_id=info:doi/10.1002/(SICI)1522-2594(199909)42:3%3C515::AID-MRM14%3E3.0.CO;2-Q&rft_dat=%3Cproquest_cross%3E70012764%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=70012764&rft_id=info:pmid/10467296&rfr_iscdi=true |