Electrophysiological and ultrastructural correlates of cryoinjury in sciatic nerve of the freeze-tolerant wood frog, Rana sylvatica
We investigated function and ultrastructure of sciatic nerves isolated from wood frogs (Rana sylvatica) endemic to the Northwest Territories, Canada, following freezing at -2.5 degrees C, -5.0 degrees C, or -7.5 degrees C. All frogs frozen at -2.5 degrees C, and most frogs (71%) frozen at -5.0 degre...
Gespeichert in:
Veröffentlicht in: | Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology Biochemical, systemic, and environmental physiology, 1999-07, Vol.169 (4-5), p.351-359 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigated function and ultrastructure of sciatic nerves isolated from wood frogs (Rana sylvatica) endemic to the Northwest Territories, Canada, following freezing at -2.5 degrees C, -5.0 degrees C, or -7.5 degrees C. All frogs frozen at -2.5 degrees C, and most frogs (71%) frozen at -5.0 degrees C, recovered within 14 h after thawing began; however, frogs did not survive exposure to -7.5 degrees C. Sciatic nerves isolated from frogs frozen at -7.5 degrees C were refractory to electrical stimulation, whereas those obtained from frogs surviving exposure to -2.5 degrees C or -5.0 degrees C generally exhibited normal characteristics of compound action potentials. Frogs responded to freezing by mobilizing hepatic glycogen reserves to synthesize the cryoprotectant glucose, which increased 20-fold in the liver and 40-fold in the blood. Ultrastructural analyses of nerves harvested from frogs in each treatment group revealed that freezing at -2.5 degrees C or -5.0 degrees C had little or no effect on tissue and cellular organization, but that (lethal) exposure to -7.5 degrees C resulted in marked shrinkage of the axon, degeneration of mitochondria within the axoplasm, and extensive delamination of myelin sheaths of the surrounding Schwann cells. |
---|---|
ISSN: | 0174-1578 1432-136X |
DOI: | 10.1007/s003600050231 |