Solution structure of the single-strand break repair protein XRCC1 N-terminal domain

XRCC1 functions in the repair of single-strand DNA breaks in mammalian cells and forms a repair complex with β-Pol, ligase III and PARP. Here we describe the NMR solution structure of the XRCC1 N-terminal domain (XRCC1 NTD). The structural core is a β-sandwich with β-strands connected by loops, thre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature Structural Biology 1999-09, Vol.6 (9), p.884-893
Hauptverfasser: Marintchev, Assen, Mullen, Mary A., Maciejewski, Mark W., Pan, Borlan, Gryk, Michael R., Mullen, Gregory P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 893
container_issue 9
container_start_page 884
container_title Nature Structural Biology
container_volume 6
creator Marintchev, Assen
Mullen, Mary A.
Maciejewski, Mark W.
Pan, Borlan
Gryk, Michael R.
Mullen, Gregory P.
description XRCC1 functions in the repair of single-strand DNA breaks in mammalian cells and forms a repair complex with β-Pol, ligase III and PARP. Here we describe the NMR solution structure of the XRCC1 N-terminal domain (XRCC1 NTD). The structural core is a β-sandwich with β-strands connected by loops, three helices and two short two-stranded β-sheets at each connection side. We show, for the first time, that the XRCC1 NTD specifically binds single-strand break DNA (gapped and nicked). We also show that the XRCC1 NTD binds a gapped DNA–β-Pol complex. The DNA binding and β-Pol binding surfaces were mapped by NMR and found to be well suited for interaction with single-strand gap DNA containing a 90° bend, and for simultaneously making contacts with the palm-thumb of β-Pol in a ternary complex. The findings suggest a mechanism for preferential binding of the XRCC1 NTD to flexible single-strand break DNA.
doi_str_mv 10.1038/12347
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_69996262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69996262</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-be09c783b8bff4f387edebffbbd8c1977313b195ac8dfa0565f819f6c3078383</originalsourceid><addsrcrecordid>eNqFUctOwzAQtBCIltJfQD5xC9hx_DqiiJdUgQQ9cIvsxC4uiVNs58DfY6CII6cd7c6MdncAWGJ0gRERl7gkFT8Ac0wrWkgp6GHGiJeFIEzMwEmMW4RKSjk5BjOMKsYxKudg_Tz2U3KjhzGFqU1TMHC0ML0aGJ3f9KbIfeU7qINRbzCYnXIB7sKYjPPw5amuMXwokgmD86qH3Tgo50_BkVV9NMt9XYD1zfW6vitWj7f39dWqaAmiqdAGyZYLooW2trJEcNOZDLXuRIsl5wQTjSVVreisQpRRK7C0LKuzSpAFOP-xzeu8TyamZnCxNX2vvBmn2DApJStZ-S8Rc8okwzQTz_bESQ-ma3bBDSp8NL__-nOKeeQ3JjTbcQr58myCmq8gmu8gyCc5KXdj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17569615</pqid></control><display><type>article</type><title>Solution structure of the single-strand break repair protein XRCC1 N-terminal domain</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Marintchev, Assen ; Mullen, Mary A. ; Maciejewski, Mark W. ; Pan, Borlan ; Gryk, Michael R. ; Mullen, Gregory P.</creator><creatorcontrib>Marintchev, Assen ; Mullen, Mary A. ; Maciejewski, Mark W. ; Pan, Borlan ; Gryk, Michael R. ; Mullen, Gregory P.</creatorcontrib><description>XRCC1 functions in the repair of single-strand DNA breaks in mammalian cells and forms a repair complex with β-Pol, ligase III and PARP. Here we describe the NMR solution structure of the XRCC1 N-terminal domain (XRCC1 NTD). The structural core is a β-sandwich with β-strands connected by loops, three helices and two short two-stranded β-sheets at each connection side. We show, for the first time, that the XRCC1 NTD specifically binds single-strand break DNA (gapped and nicked). We also show that the XRCC1 NTD binds a gapped DNA–β-Pol complex. The DNA binding and β-Pol binding surfaces were mapped by NMR and found to be well suited for interaction with single-strand gap DNA containing a 90° bend, and for simultaneously making contacts with the palm-thumb of β-Pol in a ternary complex. The findings suggest a mechanism for preferential binding of the XRCC1 NTD to flexible single-strand break DNA.</description><identifier>ISSN: 1072-8368</identifier><identifier>EISSN: 1545-9985</identifier><identifier>DOI: 10.1038/12347</identifier><identifier>PMID: 10467102</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>Amino Acid Sequence ; Animals ; Binding Sites ; Biochemistry ; Biological Microscopy ; Biomedical and Life Sciences ; DNA - genetics ; DNA - metabolism ; DNA Damage - genetics ; DNA Polymerase beta - metabolism ; DNA Repair - genetics ; DNA-Binding Proteins - chemistry ; DNA-Binding Proteins - metabolism ; Evolution, Molecular ; Glutamic Acid - genetics ; Glutamic Acid - metabolism ; Humans ; Life Sciences ; Membrane Biology ; Models, Molecular ; Molecular Sequence Data ; Nuclear Magnetic Resonance, Biomolecular ; Pliability ; Protein Binding ; Protein Structure ; Protein Structure, Secondary ; Sequence Alignment ; solution structure ; Solutions ; Space life sciences ; Thermodynamics ; X-ray Repair Cross Complementing Protein 1 ; XRCC1 protein</subject><ispartof>Nature Structural Biology, 1999-09, Vol.6 (9), p.884-893</ispartof><rights>Nature America Inc. 1999</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c305t-be09c783b8bff4f387edebffbbd8c1977313b195ac8dfa0565f819f6c3078383</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/12347$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/12347$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10467102$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marintchev, Assen</creatorcontrib><creatorcontrib>Mullen, Mary A.</creatorcontrib><creatorcontrib>Maciejewski, Mark W.</creatorcontrib><creatorcontrib>Pan, Borlan</creatorcontrib><creatorcontrib>Gryk, Michael R.</creatorcontrib><creatorcontrib>Mullen, Gregory P.</creatorcontrib><title>Solution structure of the single-strand break repair protein XRCC1 N-terminal domain</title><title>Nature Structural Biology</title><addtitle>Nat Struct Mol Biol</addtitle><addtitle>Nat Struct Biol</addtitle><description>XRCC1 functions in the repair of single-strand DNA breaks in mammalian cells and forms a repair complex with β-Pol, ligase III and PARP. Here we describe the NMR solution structure of the XRCC1 N-terminal domain (XRCC1 NTD). The structural core is a β-sandwich with β-strands connected by loops, three helices and two short two-stranded β-sheets at each connection side. We show, for the first time, that the XRCC1 NTD specifically binds single-strand break DNA (gapped and nicked). We also show that the XRCC1 NTD binds a gapped DNA–β-Pol complex. The DNA binding and β-Pol binding surfaces were mapped by NMR and found to be well suited for interaction with single-strand gap DNA containing a 90° bend, and for simultaneously making contacts with the palm-thumb of β-Pol in a ternary complex. The findings suggest a mechanism for preferential binding of the XRCC1 NTD to flexible single-strand break DNA.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Binding Sites</subject><subject>Biochemistry</subject><subject>Biological Microscopy</subject><subject>Biomedical and Life Sciences</subject><subject>DNA - genetics</subject><subject>DNA - metabolism</subject><subject>DNA Damage - genetics</subject><subject>DNA Polymerase beta - metabolism</subject><subject>DNA Repair - genetics</subject><subject>DNA-Binding Proteins - chemistry</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Evolution, Molecular</subject><subject>Glutamic Acid - genetics</subject><subject>Glutamic Acid - metabolism</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Membrane Biology</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Nuclear Magnetic Resonance, Biomolecular</subject><subject>Pliability</subject><subject>Protein Binding</subject><subject>Protein Structure</subject><subject>Protein Structure, Secondary</subject><subject>Sequence Alignment</subject><subject>solution structure</subject><subject>Solutions</subject><subject>Space life sciences</subject><subject>Thermodynamics</subject><subject>X-ray Repair Cross Complementing Protein 1</subject><subject>XRCC1 protein</subject><issn>1072-8368</issn><issn>1545-9985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFUctOwzAQtBCIltJfQD5xC9hx_DqiiJdUgQQ9cIvsxC4uiVNs58DfY6CII6cd7c6MdncAWGJ0gRERl7gkFT8Ac0wrWkgp6GHGiJeFIEzMwEmMW4RKSjk5BjOMKsYxKudg_Tz2U3KjhzGFqU1TMHC0ML0aGJ3f9KbIfeU7qINRbzCYnXIB7sKYjPPw5amuMXwokgmD86qH3Tgo50_BkVV9NMt9XYD1zfW6vitWj7f39dWqaAmiqdAGyZYLooW2trJEcNOZDLXuRIsl5wQTjSVVreisQpRRK7C0LKuzSpAFOP-xzeu8TyamZnCxNX2vvBmn2DApJStZ-S8Rc8okwzQTz_bESQ-ma3bBDSp8NL__-nOKeeQ3JjTbcQr58myCmq8gmu8gyCc5KXdj</recordid><startdate>19990901</startdate><enddate>19990901</enddate><creator>Marintchev, Assen</creator><creator>Mullen, Mary A.</creator><creator>Maciejewski, Mark W.</creator><creator>Pan, Borlan</creator><creator>Gryk, Michael R.</creator><creator>Mullen, Gregory P.</creator><general>Nature Publishing Group US</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7TM</scope><scope>7X8</scope></search><sort><creationdate>19990901</creationdate><title>Solution structure of the single-strand break repair protein XRCC1 N-terminal domain</title><author>Marintchev, Assen ; Mullen, Mary A. ; Maciejewski, Mark W. ; Pan, Borlan ; Gryk, Michael R. ; Mullen, Gregory P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-be09c783b8bff4f387edebffbbd8c1977313b195ac8dfa0565f819f6c3078383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Binding Sites</topic><topic>Biochemistry</topic><topic>Biological Microscopy</topic><topic>Biomedical and Life Sciences</topic><topic>DNA - genetics</topic><topic>DNA - metabolism</topic><topic>DNA Damage - genetics</topic><topic>DNA Polymerase beta - metabolism</topic><topic>DNA Repair - genetics</topic><topic>DNA-Binding Proteins - chemistry</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Evolution, Molecular</topic><topic>Glutamic Acid - genetics</topic><topic>Glutamic Acid - metabolism</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Membrane Biology</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Nuclear Magnetic Resonance, Biomolecular</topic><topic>Pliability</topic><topic>Protein Binding</topic><topic>Protein Structure</topic><topic>Protein Structure, Secondary</topic><topic>Sequence Alignment</topic><topic>solution structure</topic><topic>Solutions</topic><topic>Space life sciences</topic><topic>Thermodynamics</topic><topic>X-ray Repair Cross Complementing Protein 1</topic><topic>XRCC1 protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marintchev, Assen</creatorcontrib><creatorcontrib>Mullen, Mary A.</creatorcontrib><creatorcontrib>Maciejewski, Mark W.</creatorcontrib><creatorcontrib>Pan, Borlan</creatorcontrib><creatorcontrib>Gryk, Michael R.</creatorcontrib><creatorcontrib>Mullen, Gregory P.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Nucleic Acids Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature Structural Biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marintchev, Assen</au><au>Mullen, Mary A.</au><au>Maciejewski, Mark W.</au><au>Pan, Borlan</au><au>Gryk, Michael R.</au><au>Mullen, Gregory P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solution structure of the single-strand break repair protein XRCC1 N-terminal domain</atitle><jtitle>Nature Structural Biology</jtitle><stitle>Nat Struct Mol Biol</stitle><addtitle>Nat Struct Biol</addtitle><date>1999-09-01</date><risdate>1999</risdate><volume>6</volume><issue>9</issue><spage>884</spage><epage>893</epage><pages>884-893</pages><issn>1072-8368</issn><eissn>1545-9985</eissn><abstract>XRCC1 functions in the repair of single-strand DNA breaks in mammalian cells and forms a repair complex with β-Pol, ligase III and PARP. Here we describe the NMR solution structure of the XRCC1 N-terminal domain (XRCC1 NTD). The structural core is a β-sandwich with β-strands connected by loops, three helices and two short two-stranded β-sheets at each connection side. We show, for the first time, that the XRCC1 NTD specifically binds single-strand break DNA (gapped and nicked). We also show that the XRCC1 NTD binds a gapped DNA–β-Pol complex. The DNA binding and β-Pol binding surfaces were mapped by NMR and found to be well suited for interaction with single-strand gap DNA containing a 90° bend, and for simultaneously making contacts with the palm-thumb of β-Pol in a ternary complex. The findings suggest a mechanism for preferential binding of the XRCC1 NTD to flexible single-strand break DNA.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>10467102</pmid><doi>10.1038/12347</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1072-8368
ispartof Nature Structural Biology, 1999-09, Vol.6 (9), p.884-893
issn 1072-8368
1545-9985
language eng
recordid cdi_proquest_miscellaneous_69996262
source MEDLINE; SpringerLink Journals; Nature Journals Online
subjects Amino Acid Sequence
Animals
Binding Sites
Biochemistry
Biological Microscopy
Biomedical and Life Sciences
DNA - genetics
DNA - metabolism
DNA Damage - genetics
DNA Polymerase beta - metabolism
DNA Repair - genetics
DNA-Binding Proteins - chemistry
DNA-Binding Proteins - metabolism
Evolution, Molecular
Glutamic Acid - genetics
Glutamic Acid - metabolism
Humans
Life Sciences
Membrane Biology
Models, Molecular
Molecular Sequence Data
Nuclear Magnetic Resonance, Biomolecular
Pliability
Protein Binding
Protein Structure
Protein Structure, Secondary
Sequence Alignment
solution structure
Solutions
Space life sciences
Thermodynamics
X-ray Repair Cross Complementing Protein 1
XRCC1 protein
title Solution structure of the single-strand break repair protein XRCC1 N-terminal domain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T21%3A47%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solution%20structure%20of%20the%20single-strand%20break%20repair%20protein%20XRCC1%20N-terminal%20domain&rft.jtitle=Nature%20Structural%20Biology&rft.au=Marintchev,%20Assen&rft.date=1999-09-01&rft.volume=6&rft.issue=9&rft.spage=884&rft.epage=893&rft.pages=884-893&rft.issn=1072-8368&rft.eissn=1545-9985&rft_id=info:doi/10.1038/12347&rft_dat=%3Cproquest_pubme%3E69996262%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17569615&rft_id=info:pmid/10467102&rfr_iscdi=true