Regulation of Synaptotagmin I Phosphorylation by Multiple Protein Kinases

: Synaptotagmin I has been suggested to function as a low‐affinity calcium sensor for calcium‐triggered exocytosis from neurons and neuroendocrine cells. We have studied the phosphorylation of synaptotagmin I by a variety of protein kinases in vitro and in intact preparations. Syntagl, the purified,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neurochemistry 1999-09, Vol.73 (3), p.921-932
Hauptverfasser: Hilfiker, Sabine, Pieribone, Vincent A., Nordstedt, Christer, Greengard, Paul, Czernik, Andrew J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 932
container_issue 3
container_start_page 921
container_title Journal of neurochemistry
container_volume 73
creator Hilfiker, Sabine
Pieribone, Vincent A.
Nordstedt, Christer
Greengard, Paul
Czernik, Andrew J.
description : Synaptotagmin I has been suggested to function as a low‐affinity calcium sensor for calcium‐triggered exocytosis from neurons and neuroendocrine cells. We have studied the phosphorylation of synaptotagmin I by a variety of protein kinases in vitro and in intact preparations. Syntagl, the purified, recombinant, cytoplasmic domain of rat synaptotagmin I, was an effective substrate in vitro for Ca2+/calmodulin‐dependent protein kinase II (CaMKII), protein kinase C (PKC), and casein kinase II (caskII). Sequencing of tryptic phosphopeptides from syntagl revealed that CaMKII and PKC phosphorylated the same residue, corresponding to Thr112, whereas CaskII phosphorylated two residues, corresponding to Thr125 and Thr128. Endogenous synaptotagmin I was phosphorylated on purified synaptic vesicles by all three kinases. In contrast, no phosphorylation was observed on clathrin‐coated vesicles, suggesting that phosphorylation of synaptotagmin I in vivo occurs only at specific stage(s) of the synaptic vesicle life cycle. In rat brain synaptosomes and PC12 cells, K+‐evoked depolarization or treatment with phorbol ester caused an increase in the phosphorylation state of synaptotagmin I at Thr112. The results suggest the possibility that the phosphorylation of synaptotagmin I by CaMKII and PKC contributes to the mechanism(s) by which these two kinases regulate neurotransmitter release.
doi_str_mv 10.1046/j.1471-4159.1999.0730921.x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69984928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17033479</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5001-c4bc40c04787ac451ec2e18911b485bb3d033eb2e1610436b022b968f7af5e833</originalsourceid><addsrcrecordid>eNqVkNtOxCAQhonR6Hp4BdMY410rU2gL3unGw3qOh2sCSLWbbqmljfbtpdlGvTNeEeCbmX8-hPYAR4BpejiPgGYQUkh4BJzzCGcE8xiizxU0-f5aRROM4zgkmMYbaNO5OcaQ0hTW0cbQBhiDCZo9mNeulG1hq8DmwWNfybq1rXxdFFUwC-7frKvfbNOPiOqDm65si7o0wX1jW-Opq6KSzrhttJbL0pmd8dxCz2enT9OL8PrufDY9vg514gOEmipNscY0Y5nUNAGjYwOMAyjKEqXICybEKP-W-pQkVX4HxVOWZzJPDCNkCx0s-9aNfe-Ma8WicNqUpayM7ZxIOWeUx-xPEDI_iWbcg0dLUDfWucbkom6KhWx6AVgMqsRcDFrFoFUMxsVoXHz64t1xSqcW5uVX6VKxB_ZHQDoty7yRlS7cD8cTEpNhrZMl9lGUpv9HAnF5Ox0v5AvpSJxn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17033479</pqid></control><display><type>article</type><title>Regulation of Synaptotagmin I Phosphorylation by Multiple Protein Kinases</title><source>MEDLINE</source><source>IngentaConnect Free/Open Access Journals</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Hilfiker, Sabine ; Pieribone, Vincent A. ; Nordstedt, Christer ; Greengard, Paul ; Czernik, Andrew J.</creator><creatorcontrib>Hilfiker, Sabine ; Pieribone, Vincent A. ; Nordstedt, Christer ; Greengard, Paul ; Czernik, Andrew J.</creatorcontrib><description>: Synaptotagmin I has been suggested to function as a low‐affinity calcium sensor for calcium‐triggered exocytosis from neurons and neuroendocrine cells. We have studied the phosphorylation of synaptotagmin I by a variety of protein kinases in vitro and in intact preparations. Syntagl, the purified, recombinant, cytoplasmic domain of rat synaptotagmin I, was an effective substrate in vitro for Ca2+/calmodulin‐dependent protein kinase II (CaMKII), protein kinase C (PKC), and casein kinase II (caskII). Sequencing of tryptic phosphopeptides from syntagl revealed that CaMKII and PKC phosphorylated the same residue, corresponding to Thr112, whereas CaskII phosphorylated two residues, corresponding to Thr125 and Thr128. Endogenous synaptotagmin I was phosphorylated on purified synaptic vesicles by all three kinases. In contrast, no phosphorylation was observed on clathrin‐coated vesicles, suggesting that phosphorylation of synaptotagmin I in vivo occurs only at specific stage(s) of the synaptic vesicle life cycle. In rat brain synaptosomes and PC12 cells, K+‐evoked depolarization or treatment with phorbol ester caused an increase in the phosphorylation state of synaptotagmin I at Thr112. The results suggest the possibility that the phosphorylation of synaptotagmin I by CaMKII and PKC contributes to the mechanism(s) by which these two kinases regulate neurotransmitter release.</description><identifier>ISSN: 0022-3042</identifier><identifier>EISSN: 1471-4159</identifier><identifier>DOI: 10.1046/j.1471-4159.1999.0730921.x</identifier><identifier>PMID: 10461881</identifier><identifier>CODEN: JONRA9</identifier><language>eng</language><publisher>Oxford UK: Blackwell Science Ltd</publisher><subject>Amino Acid Sequence ; Animals ; Biological and medical sciences ; Calcium-Binding Proteins ; Calcium-Calmodulin-Dependent Protein Kinase Type 2 ; Calcium-Calmodulin-Dependent Protein Kinases - metabolism ; Casein Kinase II ; Cell Differentiation ; Cell physiology ; Clathrin - pharmacology ; Conserved Sequence ; Fundamental and applied biological sciences. Psychology ; Humans ; Isoenzymes - metabolism ; Membrane Glycoproteins - metabolism ; Molecular and cellular biology ; Molecular Sequence Data ; Nerve Tissue Proteins - metabolism ; Neurotransmitter release ; PC12 Cells ; Peptide Mapping ; Phosphoamino Acids - metabolism ; Phosphorylation ; Protein Kinase C - metabolism ; Protein Kinases - metabolism ; Protein-Serine-Threonine Kinases - metabolism ; Rats ; Secretion. Exocytosis ; Synaptic vesicles ; Synaptosomes ; Synaptosomes - metabolism ; Synaptotagmin ; Synaptotagmin I ; Synaptotagmins</subject><ispartof>Journal of neurochemistry, 1999-09, Vol.73 (3), p.921-932</ispartof><rights>1999 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5001-c4bc40c04787ac451ec2e18911b485bb3d033eb2e1610436b022b968f7af5e833</citedby><cites>FETCH-LOGICAL-c5001-c4bc40c04787ac451ec2e18911b485bb3d033eb2e1610436b022b968f7af5e833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1046%2Fj.1471-4159.1999.0730921.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1046%2Fj.1471-4159.1999.0730921.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27902,27903,45552,45553,46386,46810</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1953233$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10461881$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hilfiker, Sabine</creatorcontrib><creatorcontrib>Pieribone, Vincent A.</creatorcontrib><creatorcontrib>Nordstedt, Christer</creatorcontrib><creatorcontrib>Greengard, Paul</creatorcontrib><creatorcontrib>Czernik, Andrew J.</creatorcontrib><title>Regulation of Synaptotagmin I Phosphorylation by Multiple Protein Kinases</title><title>Journal of neurochemistry</title><addtitle>J Neurochem</addtitle><description>: Synaptotagmin I has been suggested to function as a low‐affinity calcium sensor for calcium‐triggered exocytosis from neurons and neuroendocrine cells. We have studied the phosphorylation of synaptotagmin I by a variety of protein kinases in vitro and in intact preparations. Syntagl, the purified, recombinant, cytoplasmic domain of rat synaptotagmin I, was an effective substrate in vitro for Ca2+/calmodulin‐dependent protein kinase II (CaMKII), protein kinase C (PKC), and casein kinase II (caskII). Sequencing of tryptic phosphopeptides from syntagl revealed that CaMKII and PKC phosphorylated the same residue, corresponding to Thr112, whereas CaskII phosphorylated two residues, corresponding to Thr125 and Thr128. Endogenous synaptotagmin I was phosphorylated on purified synaptic vesicles by all three kinases. In contrast, no phosphorylation was observed on clathrin‐coated vesicles, suggesting that phosphorylation of synaptotagmin I in vivo occurs only at specific stage(s) of the synaptic vesicle life cycle. In rat brain synaptosomes and PC12 cells, K+‐evoked depolarization or treatment with phorbol ester caused an increase in the phosphorylation state of synaptotagmin I at Thr112. The results suggest the possibility that the phosphorylation of synaptotagmin I by CaMKII and PKC contributes to the mechanism(s) by which these two kinases regulate neurotransmitter release.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Calcium-Binding Proteins</subject><subject>Calcium-Calmodulin-Dependent Protein Kinase Type 2</subject><subject>Calcium-Calmodulin-Dependent Protein Kinases - metabolism</subject><subject>Casein Kinase II</subject><subject>Cell Differentiation</subject><subject>Cell physiology</subject><subject>Clathrin - pharmacology</subject><subject>Conserved Sequence</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Isoenzymes - metabolism</subject><subject>Membrane Glycoproteins - metabolism</subject><subject>Molecular and cellular biology</subject><subject>Molecular Sequence Data</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Neurotransmitter release</subject><subject>PC12 Cells</subject><subject>Peptide Mapping</subject><subject>Phosphoamino Acids - metabolism</subject><subject>Phosphorylation</subject><subject>Protein Kinase C - metabolism</subject><subject>Protein Kinases - metabolism</subject><subject>Protein-Serine-Threonine Kinases - metabolism</subject><subject>Rats</subject><subject>Secretion. Exocytosis</subject><subject>Synaptic vesicles</subject><subject>Synaptosomes</subject><subject>Synaptosomes - metabolism</subject><subject>Synaptotagmin</subject><subject>Synaptotagmin I</subject><subject>Synaptotagmins</subject><issn>0022-3042</issn><issn>1471-4159</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqVkNtOxCAQhonR6Hp4BdMY410rU2gL3unGw3qOh2sCSLWbbqmljfbtpdlGvTNeEeCbmX8-hPYAR4BpejiPgGYQUkh4BJzzCGcE8xiizxU0-f5aRROM4zgkmMYbaNO5OcaQ0hTW0cbQBhiDCZo9mNeulG1hq8DmwWNfybq1rXxdFFUwC-7frKvfbNOPiOqDm65si7o0wX1jW-Opq6KSzrhttJbL0pmd8dxCz2enT9OL8PrufDY9vg514gOEmipNscY0Y5nUNAGjYwOMAyjKEqXICybEKP-W-pQkVX4HxVOWZzJPDCNkCx0s-9aNfe-Ma8WicNqUpayM7ZxIOWeUx-xPEDI_iWbcg0dLUDfWucbkom6KhWx6AVgMqsRcDFrFoFUMxsVoXHz64t1xSqcW5uVX6VKxB_ZHQDoty7yRlS7cD8cTEpNhrZMl9lGUpv9HAnF5Ox0v5AvpSJxn</recordid><startdate>199909</startdate><enddate>199909</enddate><creator>Hilfiker, Sabine</creator><creator>Pieribone, Vincent A.</creator><creator>Nordstedt, Christer</creator><creator>Greengard, Paul</creator><creator>Czernik, Andrew J.</creator><general>Blackwell Science Ltd</general><general>Blackwell</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope></search><sort><creationdate>199909</creationdate><title>Regulation of Synaptotagmin I Phosphorylation by Multiple Protein Kinases</title><author>Hilfiker, Sabine ; Pieribone, Vincent A. ; Nordstedt, Christer ; Greengard, Paul ; Czernik, Andrew J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5001-c4bc40c04787ac451ec2e18911b485bb3d033eb2e1610436b022b968f7af5e833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Calcium-Binding Proteins</topic><topic>Calcium-Calmodulin-Dependent Protein Kinase Type 2</topic><topic>Calcium-Calmodulin-Dependent Protein Kinases - metabolism</topic><topic>Casein Kinase II</topic><topic>Cell Differentiation</topic><topic>Cell physiology</topic><topic>Clathrin - pharmacology</topic><topic>Conserved Sequence</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Isoenzymes - metabolism</topic><topic>Membrane Glycoproteins - metabolism</topic><topic>Molecular and cellular biology</topic><topic>Molecular Sequence Data</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Neurotransmitter release</topic><topic>PC12 Cells</topic><topic>Peptide Mapping</topic><topic>Phosphoamino Acids - metabolism</topic><topic>Phosphorylation</topic><topic>Protein Kinase C - metabolism</topic><topic>Protein Kinases - metabolism</topic><topic>Protein-Serine-Threonine Kinases - metabolism</topic><topic>Rats</topic><topic>Secretion. Exocytosis</topic><topic>Synaptic vesicles</topic><topic>Synaptosomes</topic><topic>Synaptosomes - metabolism</topic><topic>Synaptotagmin</topic><topic>Synaptotagmin I</topic><topic>Synaptotagmins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hilfiker, Sabine</creatorcontrib><creatorcontrib>Pieribone, Vincent A.</creatorcontrib><creatorcontrib>Nordstedt, Christer</creatorcontrib><creatorcontrib>Greengard, Paul</creatorcontrib><creatorcontrib>Czernik, Andrew J.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of neurochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hilfiker, Sabine</au><au>Pieribone, Vincent A.</au><au>Nordstedt, Christer</au><au>Greengard, Paul</au><au>Czernik, Andrew J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation of Synaptotagmin I Phosphorylation by Multiple Protein Kinases</atitle><jtitle>Journal of neurochemistry</jtitle><addtitle>J Neurochem</addtitle><date>1999-09</date><risdate>1999</risdate><volume>73</volume><issue>3</issue><spage>921</spage><epage>932</epage><pages>921-932</pages><issn>0022-3042</issn><eissn>1471-4159</eissn><coden>JONRA9</coden><abstract>: Synaptotagmin I has been suggested to function as a low‐affinity calcium sensor for calcium‐triggered exocytosis from neurons and neuroendocrine cells. We have studied the phosphorylation of synaptotagmin I by a variety of protein kinases in vitro and in intact preparations. Syntagl, the purified, recombinant, cytoplasmic domain of rat synaptotagmin I, was an effective substrate in vitro for Ca2+/calmodulin‐dependent protein kinase II (CaMKII), protein kinase C (PKC), and casein kinase II (caskII). Sequencing of tryptic phosphopeptides from syntagl revealed that CaMKII and PKC phosphorylated the same residue, corresponding to Thr112, whereas CaskII phosphorylated two residues, corresponding to Thr125 and Thr128. Endogenous synaptotagmin I was phosphorylated on purified synaptic vesicles by all three kinases. In contrast, no phosphorylation was observed on clathrin‐coated vesicles, suggesting that phosphorylation of synaptotagmin I in vivo occurs only at specific stage(s) of the synaptic vesicle life cycle. In rat brain synaptosomes and PC12 cells, K+‐evoked depolarization or treatment with phorbol ester caused an increase in the phosphorylation state of synaptotagmin I at Thr112. The results suggest the possibility that the phosphorylation of synaptotagmin I by CaMKII and PKC contributes to the mechanism(s) by which these two kinases regulate neurotransmitter release.</abstract><cop>Oxford UK</cop><pub>Blackwell Science Ltd</pub><pmid>10461881</pmid><doi>10.1046/j.1471-4159.1999.0730921.x</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-3042
ispartof Journal of neurochemistry, 1999-09, Vol.73 (3), p.921-932
issn 0022-3042
1471-4159
language eng
recordid cdi_proquest_miscellaneous_69984928
source MEDLINE; IngentaConnect Free/Open Access Journals; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry
subjects Amino Acid Sequence
Animals
Biological and medical sciences
Calcium-Binding Proteins
Calcium-Calmodulin-Dependent Protein Kinase Type 2
Calcium-Calmodulin-Dependent Protein Kinases - metabolism
Casein Kinase II
Cell Differentiation
Cell physiology
Clathrin - pharmacology
Conserved Sequence
Fundamental and applied biological sciences. Psychology
Humans
Isoenzymes - metabolism
Membrane Glycoproteins - metabolism
Molecular and cellular biology
Molecular Sequence Data
Nerve Tissue Proteins - metabolism
Neurotransmitter release
PC12 Cells
Peptide Mapping
Phosphoamino Acids - metabolism
Phosphorylation
Protein Kinase C - metabolism
Protein Kinases - metabolism
Protein-Serine-Threonine Kinases - metabolism
Rats
Secretion. Exocytosis
Synaptic vesicles
Synaptosomes
Synaptosomes - metabolism
Synaptotagmin
Synaptotagmin I
Synaptotagmins
title Regulation of Synaptotagmin I Phosphorylation by Multiple Protein Kinases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T09%3A13%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20of%20Synaptotagmin%20I%20Phosphorylation%20by%20Multiple%20Protein%20Kinases&rft.jtitle=Journal%20of%20neurochemistry&rft.au=Hilfiker,%20Sabine&rft.date=1999-09&rft.volume=73&rft.issue=3&rft.spage=921&rft.epage=932&rft.pages=921-932&rft.issn=0022-3042&rft.eissn=1471-4159&rft.coden=JONRA9&rft_id=info:doi/10.1046/j.1471-4159.1999.0730921.x&rft_dat=%3Cproquest_cross%3E17033479%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=17033479&rft_id=info:pmid/10461881&rfr_iscdi=true